242 research outputs found

    Enhancing water stress tolerance of bread wheat during seed germination and seedling emergence: caffeine-induced modulation of antioxidative defense mechanisms

    Get PDF
    Better crop stand establishment, a function of rapid and uniform seedling emergence, depends on the activities of germination-related enzymes, which is problematic when there is insufficient soil moisture. Different ways are in practice for counteracting this problem, including seed priming with different chemicals, which are considered helpful in obtaining better crop stand establishment to some extent through improved seed germination and seedling emergence. In this growth room experiment, caffeine was used as a seed priming agent to improve germination under moisture scarcity. Polyethylene glycol-8000 (18%) was added to Hoagland’s nutrient solution to create drought stress (−0.65 MPa). The experiment was arranged in a completely randomized design (CRD), having four replications of each treatment. A newly developed wheat genotype SB-1 was used for the experimentation. Different doses of caffeine, i.e., 4 ppm, 8 ppm, 12 ppm, and 16 ppm, including no soaking and water soaking, were used as seed priming treatments. Water deficit caused oxidative stress and adversely affected the seed germination, seedling vigor, activities of germination enzymes, photosynthetic pigments, and antioxidative defense mechanism in roots and shoots of seedlings. Caffeine seed priming ameliorated the negative effects of water deficit on seed germination and seedling vigor, which was attributed to the reduction in lipid peroxidation and improvement in the activities of germination-related enzymes like glucosidase, amylase, and protease. Conclusively, seed priming with 12 ppm caffeine outperformed the other treatments and hence is recommended for better crop stand establishment under conditions of soil moisture deficit

    Sources of Type I Interferons in Infectious Immunity: Plasmacytoid Dendritic Cells Not Always in the Driver's Seat

    Get PDF
    Type I Interferons (IFNs) are hallmark cytokines produced in immune responses to all classes of pathogens. Type I IFNs can influence dendritic cell (DC) activation, maturation, migration, and survival, but also directly enhance natural killer (NK) and T/B cell activity, thus orchestrating various innate and adaptive immune effector functions. Therefore, type I IFNs have long been considered essential in the host defense against virus infections. More recently, it has become clear that depending on the type of virus and the course of infection, production of type I IFN can also lead to immunopathology or immunosuppression. Similarly, in bacterial infections type I IFN production is often associated with detrimental effects for the host. Although most cells in the body are thought to be able to produce type I IFN, plasmacytoid DCs (pDCs) have been termed the natural “IFN producing cells” due to their unique molecular adaptations to nucleic acid sensing and ability to produce high amounts of type I IFN. Findings from mouse reporter strains and depletion experiments in in vivo infection models have brought new insights and established that the role of pDCs in type I IFN production in vivo is less important than assumed. Production of type I IFN, especially the early synthesized IFNβ, is rather realized by a variety of cell types and cannot be mainly attributed to pDCs. Indeed, the cell populations responsible for type I IFN production vary with the type of pathogen, its tissue tropism, and the route of infection. In this review, we summarize recent findings from in vivo models on the cellular source of type I IFN in different infectious settings, ranging from virus, bacteria, and fungi to eukaryotic parasites. The implications from these findings for the development of new vaccination and therapeutic designs targeting the respectively defined cell types are discussed

    Sugar alcohols-induced oxidative metabolism in cotton callus culture

    Get PDF
    Sugar alcohols (mannitol and sorbitol) may cause oxidative damage in plants if used in higher concentration. Our present experiment was undertaken to study physiological and metabolic responses in cotton (Gossypium hirsutum L.) callus against mannitol and sorbitol higher doses. Both markedly declined mean values of relative fresh weight growth rates with the increase in their concentration intensities. The overall protein and malonaldehyde (MDA) contents increased in the stressed-shocked cells. Also, the mean values of various antioxidants such as superoxide dismutase (SOD), peroxidase (POD), ascorbate peroxidase (APX) and calalase (CAT) quantitatively improved over their respective controls. As a whole, MDA contents were higher in magnitude than that of different antioxidant enzymes. Also values of relative increase in case of POD were higher as compared to SOD showing the ability of cotton callus culture to scavenge H2O2 produced as a result of the activity of SOD. Our results show that both agents caused greater damage to the membranous structure in comparison to less activation of the antioxidants. As a whole, the overall change regarding fresh weight growth rates was less after 14-day stress regime, while the mean values of the antioxidant enzymes activities were lower after the 28-day stress period. Such decrease conveys the message that less reactive oxygen species (ROS) might have been produced.Keywords: Antioxidants, callus culture, Gossypium hirsutum L., osmotic stress, sugar alcoholsAfrican Journal of Biotechnology Vol. 12(17), pp. 2191-220

    Zinc fortification and alleviation of cadmium stress by application of lysine chelated zinc on different varieties of wheat and rice in cadmium stressed soil

    Get PDF
    Sustainable and cost-effective methods are required to increase the food production and decrease the toxic effects of heavy metals. Most of the agriculture land is contaminated with cadmium (Cd). The present study was designed to minimize the toxic effect of Cd stress (0, 10 and 20 mg kg1-) on tolerant and sensitive varieties of wheat (Punjab-2011; Sammar) and rice (Kisan Basmati; Chenab) under Zn-lysine (Zn-lys) application as foliar spray (0, 12.5 and 25 mM) and seed priming (0, 3 and 6 ppm). Remarkable decrease was observed in plant growth, physiology and biochemistry as well as increase in Cd uptake, roots to shoots and grains of both crops. Cd significantly reduced the root and shoot lengths, root and shoot dry weights, transpiration rate, photosynthetic rate, stomatal conductance and water use efficiency as well as chlorophyll contents associated with enhanced electrolyte leakage (EL), malondialdehyde (MDA) and H2O2 and Cd uptake in different plant parts including grains of both crop varieties. The foliar application of Zn-lys (0, 12.5 and 25 mM) ameliorated the toxic effect of Cd on growth and physiology associated with decrease in EL, MDA and H2O2 and improved the activities of SOD, POD, CAT and APX enzymes with decreasing Cd uptake in tolerant varieties of wheat and rice as compared to seed priming. Furthermore, it has been investigated that the foliar application of Zn-lys is effective to improve quality of wheat and rice tolerant varieties (Punjab-2011 and Chenab) under Cd contamination soils

    Evaluation and Classification Risks of Implementing Blockchain in the Drug Supply Chain with a New Hybrid Sorting Method

    Get PDF
    In blockchain technology, all registered information, from the place of production of the product to its point of sale, is recorded as permanent and unchangeable, and no intermediary has the ability to change the data of other members and even the data registered by them without public consensus. In this way, users can trust the accuracy of the data. Blockchain systems have a wide range of applications in the medical and health sectors, from creating an integrated system for recording and tracking patients' medical records to creating transparency in the drug supply chain and medical supplies. However, implementing blockchain technology in the supply chain has limitations and sometimes has risks. In this study, BWM methods and VIKORSort have been used to classify the risks of implementing blockchain in the drug supply chain. The results show that cyberattacks, double spending, and immutability are very dangerous risks for implementation of blockchain technology in the drug supply chain. Therefore, the risks of blockchain technology implementation in the drug supply chain have been classified based on a literature review and opinions of the experts. The risks of blockchain technology implementation in the supply chain were determined from the literature review

    WORK RELATED INJURIES IN SMALL SCALE METAL PRESS INDUSTRIES OF SHAHDRAH TOWN, LAHORE, PAKISTAN

    Get PDF
    The work place injuries have to pay both direct and indirect cost of the accidents. With a population of 169 million, Pakistan has no reported estimate of the national impact of workplace injuries. This study presented a profile of workplace injuries associated with small medium enterprises of metal press cottage industries in Shahdra Town, Lahore (Pakistan) and determined the impact on the country’s economy besides to recommend strategies for delineating these important problems. The in-house accident investigation technique was used to collect the data from randomly selected small scale metal press cottage industries of study area for all types of injuries principally from minor to major ones. It was observed that role of human error in occupational injuries is momentous and keeping in view the necessity of proper safety training of the metal workers, thre is a dire need to institute an information system to evaluate the true impact of injuries and develop national safety standards

    RETRACTED: Mitigation of salinity stress in barley genotypes with variable salt tolerance by application of zinc oxide nanoparticles

    Get PDF
    Salinity has become a major environmental concern of agricultural lands, impairing crop production. The current study aimed to examine the role of zinc oxide nanoparticles (ZnO NPs) in reducing the oxidative stress induced by salinity and the overall improvement in phytochemical properties in barley. A total of nine different barley genotypes were first subjected to salt (NaCl) stress in hydroponic conditions to determine the tolerance among the genotypes. The genotype Annora was found as most sensitive, and the most tolerant genotype was Awaran 02 under salinity stress. In another study, the most sensitive (Annora) and tolerant (Awaran 02) barley genotypes were grown in pots under salinity stress (100 mM). At the same time, half of the pots were provided with the soil application of ZnO NPs (100 mg kg–1), and the other half pots were foliar sprayed with ZnO NPs (100 mg L–1). Salinity stress reduced barley growth in both genotypes compared to control plants. However, greater reduction in barley growth was found in Annora (sensitive genotype) than in Awaran 02 (tolerant genotype). The exogenous application of ZnO NPs ameliorated salt stress and improved barley biomass, photosynthesis, and antioxidant enzyme activities by reducing oxidative damage caused by salt stress. However, this positive effect by ZnO NPs was observed more in Awaran 02 than in Annora genotype. Furthermore, the foliar application of ZnO NPs was more effective than the soil application of ZnO NPs. Findings of the present study revealed that exogenous application of ZnO NPs could be a promising approach to alleviate salt stress in barley genotypes with different levels of salinity tolerance

    Microbe-citric acid assisted phytoremediation of chromium by castor bean (Ricinus communis L.)

    Get PDF
    Chromium is one of the highly toxic heavy metals to plant growth and development especially hexavalent chromium (Cr+6) due to its readily available nature and mobility into the environment. The chelating agents and hyperaccumulator plant can contribute to remediating the heavy metals from the contaminated medium. This study was conducted to analyze the role of citric acid and chromium resistant bacteria in castor bean to remediate Cr+6 from the polluted soil. The soil was spiked with different levels of citric acid (0, 2.5, 5 mM) and chromium (0, 10, 20 mg kg−1). The ripened plants were harvested and analyzed for growth parameters, chlorophyll contents, gas exchange parameters, oxidative stress markers, antioxidant enzymes activities and chromium accumulation in different parts of plants. The high concentration of chromium 20 mg kg−1 drastically reduced the plant growth, decreased photosynthetic rate and increased oxidative stress. The application of CA improved the plant growth even at the highest concentration of chromium which was further boosted by the combined application of CA and chromium resistant bacteria. However, the performance of staphylococcus aureus was found significantly better than Bacillus subtilis due to its better ability to tolerate chromium toxicity even at high concentrations. The findings proved that castor bean has excellent potential to tolerate high chromium concentrations and can be effectively used to remediate metals contaminated soil. Further, CA and metal resistant bacteria can significantly enhance the phytoremediation potential of castor bean and other hyperaccumulator plants. The bacteria assisted phytoremediation coupled with the chelating agent can be a practical approach to remediate the metals contaminating soils

    Individual and Synergic Effects of Phosphorus and Gibberellic Acid on Organic Acids Exudation Pattern, Ultra-Structure of Chloroplast and Stress Response Gene Expression in Cu-Stressed Jute (Corchorus Capsularis L.)

    Get PDF
    Copper (Cu) pollution in agricultural soils is considered as a serious health risk due to its accumulation in plants. Thus, there is an urgent need to optimize nutrient application for higher yield with lower Cu uptake to ensure food security. A pot experiment was conducted to determine the effects of single and/or combined application of different levels (0 and 80 kg ha−1) of phosphorus (P) and gibberellic acid (0 and 100 mg L−1) on Cu accumulation, morpho-physiological and antioxidative defence attributes of jute (Corchorus capsularis L.) exposed to severe Cu stress (0, 200 and 400 mg kg−1). Results revealed that C. capsularis tolerated up to 200 mg kg−1 Cu concentration without a significant (

    Floating Treatment Wetlands (FTWs) is an Innovative Approach for the Remediation of Petroleum Hydrocarbons-Contaminated Water

    Get PDF
    Globally, water resources contaminated with petroleum hydrocarbons are under much consideration due to their hazardous effects on human beings as well as on plants and animals in the ecosystem. Petroleum hydrocarbons are classified as recalcitrant pollutants in nature. These petroleum products are mostly released in the water resources during the petroleum refining process by oil refineries. The conventional clean-up technologies for hydrocarbons contaminated water have more destructive effects on the aquatic and land ecosystems. Consequently, to develop cost-effective and more environment-friendly techniques that clean up the environment and restore the marine ecosystem to its original forms. Keeping in view, this review article explores the detailed information on fabrication, cost-effectiveness, and an overview of innovation of the floating treatment wetlands (FTWs) using plants and bacterial combined functions to remediate the petroleum hydrocarbons contaminated water. The review also discusses the improvement of microbial efficacy for hydrocarbon degradation using FTWs. The review article shows the various applications of FTWs to remove different organic pollutants in petroleum hydrocarbons contaminated water. The review also describes the prospective benefits of FTWs for their multiple uses for removal of hydrocarbons, chemical oxygen demand (COD), biochemical oxygen demand (BOD), phenol, and solids from hydrocarbons contaminated water. This review widely discusses the role of hydrocarbons in degrading bacteria, and wetland plants and the mechanism involved during the remediation process of hydrocarbons in FTWs. It further demonstrates features disturbing the treatment efficiency of FTWs, and finally, it is concluded by successful applications of FTWs and various suggestions for potential future research prospects. Graphical Abstract: [Figure not available: see fulltext.
    corecore