8 research outputs found

    Definition and design of an experiment to test raster scanning with rotating unbalanced-mass devices on gimbaled payloads

    Get PDF
    An experiment designed to test the feasibility of using rotating unbalanced-mass (RUM) devices for line and raster scanning gimbaled payloads, while expending very little power is described. The experiment is configured for ground-based testing, but the scan concept is applicable to ground-based, balloon-borne, and space-based payloads, as well as free-flying spacecraft. The servos used in scanning are defined; the electronic hardware is specified; and a computer simulation model of the system is described. Simulation results are presented that predict system performance and verify the servo designs

    Results of a laboratory experiment that tests rotating unbalanced-mass devices for scanning gimbaled payloads and free-flying spacecraft

    Get PDF
    Rotating unbalanced-mass (RUM) devices are a new way to scan space-based, balloon-borne, and ground-based gimbaled payloads, like x-ray and gamma-ray telescopes. They can also be used to scan free-flying spacecraft. Circular scans, linear scans, and raster scans can be generated. A pair of RUM devices generates the basic scan motion and an auxiliary control system using torque motors, control moment gyros, or reaction wheels keeps the scan centered on the target and produces some complementary motion for raster scanning. Previous analyses and simulation results show that this approach offers significant power savings compared to scanning only with the auxiliary control system, especially with large payloads and high scan frequencies. However, these claims have never been proven until now. This paper describes a laboratory experiment which tests the concept of scanning a gimbaled payload with RUM devices. A description of the experiment is given and test results that prove the concept are presented. The test results are compared with those from a computer simulation model of the experiment and the differences are discussed

    Advanced Sensor Concepts

    Get PDF
    The Advanced Sensor Concepts project was conducted under the Center Director's Discretionary Fund at the Marshall Space Flight Center. Its objective was to advance the technology originally developed for the Glovebox Integrated Microgravity Isolation Technology project. The objective of this effort was to develop and test several new motion sensors. To date, the investigators have invented seven new technologies during this endeavor and have conceived several others. The innovative basic sensor technology is an absolute position sensor. It employs only two active components, and it is simple, inexpensive, reliable, repeatable, lightweight, and relatively unobtrusive. Two sensors can be utilized in the same physical space to achieve redundancy. The sensor has micrometer positional accuracy and can be configured as a two- or three-dimensional sensor. The sensor technology has the potential to pioneer a new class of linear and rotary sensors. This sensor is the enabling technology for autonomous assembly of modular structures in space and on extraterrestrial locations

    Solar Sail Propulsion: Enabling New Capabilities for Heliophysics

    Get PDF
    Solar sails can play a critical role in enabling solar and heliophysics missions. Solar sail technology within NASA is currently at 80% of TRL-6, suitable for an in-flight technology demonstration. It is conceivable that an initial demonstration could carry scientific payloads that, depending on the type of mission, are commensurate with the goals of the three study panels of the 2010 Heliophysics Survey. Follow-on solar sail missions, leveraging advances in solar sail technology to support Heliophysics Survey goals, would then be feasible. This white paper reports on a sampling of missions enabled by solar sails, the current state of the technology, and what funding is required to advance the current state of technology such that solar sails can enable these mission

    Rotating unbalanced-mass devices for scanning - Proof-of-concept test results

    No full text

    Semisynthetic biogenic magnetosome nanoparticles for the detection of proteins and nucleic acids

    No full text
    An attractive approach: Biogenic magnetic nanoparticles, so‐called magnetosomes, containing a magnetic iron oxide core enclosed in a protein–lipid membrane, were chemically functionalized with DNA oligonucleotides by using a modular coupling approach. The resulting nanoparticles were used for the assembly of heterostructures with DNA‐modified gold nanoparticles (see TEM image) and as reagents for protein detection

    Magneto Immuno-MR: A novel immunoassay based on biogenic magnetosome nanoparticles

    No full text
    We describe an innovative modification of the Immuno-PCR technology for automatable high sensitive antigen detection. The Magneto Immuno-PCR (M-IPCR) is based on antibody-functionalized biogenic magnetosome nanoparticles revealing major advantages over synthetic magnetic particles. The general principle of the M-IPCR is similar to that of a two-sided (sandwich) immunoassay. However, antibody-functionalized magnetosome conjugates were employed for the immobilization and magnetic enrichment of the signal generating detection complex enabling the establishment of a surface independent immunoassay. To this end, the M-IPCR was carried out by simultaneously tagging the antigen with the reagent for read-out, i.e., a conjugate comprising the specific antibody and DNA fragments, in the presence of the antibody-functionalized magnetosomes. To demonstrate the general functionality of the M-IPCR, the detection of recombinant Hepatitis B surface Antigen (HBsAg) in human serum was established. We observed a detection limit of 320 pg/ml of HBsAg using the M-IPCR, which was about 100-fold more sensitive than the analogous Magneto-ELISA, established in parallel for comparison purposes
    corecore