4 research outputs found

    Gene Expression Profiling and Protein Analysis Reveal Suppression of the C-Myc Oncogene and Inhibition JAK/STAT and PI3K/AKT/mTOR Signaling by Thymoquinone in Acute Myeloid Leukemia Cells

    Get PDF
    Overexpression of c-Myc plays an essential role in leukemogenesis and drug resistance, making c-Myc an attractive target for cancer therapy. However, targeting c-Myc directly is impossible, and c-Myc upstream regulator pathways could be targeted instead. This study investigated the effects of thymoquinone (TQ), a bioactive constituent in Nigella sativa, on the activation of upstream regulators of c-Myc: the JAK/STAT and PI3K/AKT/mTOR pathways in HL60 leukemia cells. Nextgeneration sequencing (NGS) was performed for gene expression profiling after TQ treatment. The expression of c-Myc and genes involved in JAK/STAT and PI3K/AKT/mTOR were validated by quantitative reverse transcription PCR (RT-qPCR). In addition, Jess assay analysis was performed to determine TQ’s effects on JAK/STAT and PI3K/AKT signaling and c-Myc protein expression. The results showed 114 significant differentially expressed genes after TQ treatment (p < 0.002). DAVID analysis revealed that most of these genes’ effect was on apoptosis and proliferation. There was downregulation of c-Myc, PI3K, AKT, mTOR, JAK2, STAT3, STAT5a, and STAT5b. Protein analysis showed that TQ also inhibited JAK/STAT and PI3K/AKT signaling, resulting in inhibition of c-Myc protein expression. In conclusion, the findings suggest that TQ potentially inhibits proliferation and induces apoptosis in HL60 leukemia cells by downregulation of c-Myc expression through inhibition of the JAK/STAT and PI3K/AKT signaling pathways

    Anticarcinogenic impact of extracellular vesicles (exosomes) from cord blood stem cells in malignant melanoma: A potential biological treatment

    Get PDF
    Incidence of Malignant Melanoma has become the 5th in the UK. To date, the major anticancer therapeutics include cell therapy, immunotherapy, gene therapy and nanotechnology-based strategies. Recently, extracellular vesicles, especially exosomes, have been highlighted for their therapeutic benefits in numerous chronic diseases. Exosomes display multifunctional properties, including inhibition of cancer cell proliferation and initiation of apoptosis. In the present in vitro study, the antitumour effect of cord blood stem cell (CBSC)-derived exosomes was confirmed by the CCK-8 assay (p < 0.05) on CHL-1 melanoma cells and improve the repair mechanism on lymphocytes from melanoma patients. Importantly, no significant effect was observed in healthy lymphocytes when treated with the exosome concentrations at 24, 48 and 72 h. Comet assay results (OTM and %Tail DNA) demonstrated that the optimal exosome concentration showed a significant impact (p < 0.05) in lymphocytes from melanoma patients whilst causing no significant DNA damage in lymphocytes of healthy volunteers was 300 μg/ml. Similarly, the Comet assay results depicted significant DNA damage in a melanoma cell line (CHL-1 cells) treated with CBSC-derived exosomes, both the cytotoxicity of CHL-1 cells treated with CBSC-derived exosomes exhibited a significant time-dependent decrease in cell survival. Sequencing analysis of CBSC exosomes showed the presence of the let-7 family of miRNAs, including let-7a-5p, let-7b-5p, let-7c-5p, let-7d-3p, let-7d-5p and two novel miRNAs. The potency of CBSC exosomes in inhibiting cancer progression in lymphocytes from melanoma patients and CHL-1 cells whilst causing no harm to the healthy lymphocytes makes it a potential candidate as an anticancer therapy

    HBB Gene Mutations and Their Pathological Impacts on HbE/β-Thalassaemia in Kuala Terengganu, Malaysia

    No full text
    Background: β-thalassaemia is a disorder caused by mutations in the β-globin gene, leading to defective production of haemoglobins (Hb) and red blood cells (RBCs). It is characterised by anaemia, ineffective erythropoiesis, and iron overload. Patients with severe β-thalassaemia require lifelong blood transfusions. Haemoglobin E beta-thalassaemia (HbE/β-thalassaemia) is a severe form of β-thalassaemia in Asian countries. More than 200 alleles have been recognised in the β-globin region. Different geographical regions show different frequencies of allelic characteristics. In this study, the spectrum of β-thalassaemia (β-thal) alleles and their correlation with iron overload, in HbE/β-thalassaemia patients, β-thalassaemia trait, and HbE trait were studied. Methods: Blood samples (n = 260) were collected from 65 β-thalassaemia patients, 65 parents (fathers and/or mothers) and 130 healthy control individuals. Haematological analyses, iron profiles, and serum hepcidin levels were examined for all participants. DNA was extracted from patients’ and their parents’ blood samples, then subjected to PCR amplification. Multiplex amplification refractory mutation system PCR (MARMS-PCR) was conducted for eighteen primers to detect the mutations. Results: There was severe anaemia present in HbE/β-thalassaemia patients compared to their parents and healthy controls. The ferritin and iron levels were significantly increased in patients compared to their parents and healthy controls (p = 0.001). Two common mutations were detected among the patient group and three mutations were detected among their parents, in addition to seven novel mutations in HbE/β-thalassaemia patients (explained in results). Conclusion: Some mutations were associated with severe anaemia in β-thalassaemia patients. The detection of mutations is a prognostic marker, and could enhance the appropriate management protocols and improve the haematological and biochemical statuses of β-thalassaemia patients
    corecore