3 research outputs found

    A coupled-line balun for ultra-wideband single-balanced diode mixer

    Get PDF
    A multi-section coupled-line balun design for an ultra-wideband diode mixer is presented in this paper. The multi-section coupled-line balun was used to interface with the diode mixer in which it can deliver a good impedance matching between the diode mixer and input/output ports. The mixer design operates with a Local Oscillator (LO) power level of 10 dBm, Radio Frequency (RF) power level of -20 dBm and Intermediate Frequency (IF) of 100 MHz with the balun characteristic of 180° phase shift over UWB frequency (3.1 to 10.6 GHz), the mixer design demonstrated a good conversion loss of -8 to -16 dB over the frequency range from 3.1 to 10.6 GHz. Therefore, the proposed multi-section coupled-line balun for application of UWB mixer showed a good isolation between the mixer’s ports

    Analysis of Open Stub Resonator and its Application in Dual Isolation Band of SPDT Switch Design

    Get PDF
    In this paper, an analysis of open stub resonator is presented and its application in dual isolation band of Single Pole Double Throw (SPDT) switch is proposed. A mathematical model and the characteristic of the bandstop of the resonator were analyzed and discussed. The open stub resonator was implemented using the microstrip transmission line and able to switch between bandstop and allpass responses. Frequency bands of 2.3 and 3.5 GHz were chosen to demonstrate the dual isolation band in the switch design. The performance results of the SPDT switch showed that the isolation was greater than 30 dB, return loss was greater than 10 dB and insertion loss less than 2 dB at the center resonant frequency of 2.3 and 3.5 GHz. The potential application of the proposed dual isolation band of SPDT switch is for multi band RF front-end system such as WiMAX, LTE, WiFi and HyperLAN
    corecore