3 research outputs found

    Rapid thermal annealing: An efficient method to improve the electrical properties of tellurium compensated Interfacial Misfit GaSb/GaAs heterostructures

    Get PDF
    The effect of thermal annealing on Te compensated Interfacial Misfit GaSb/GaAs heterostructures is investigated by using two different thermal annealing procedures, namely rapid thermal annealing and furnace annealing. The electrical properties of the devices are studied by using Current–Voltage, Capacitance–Voltage and Deep Level Transient Spectroscopy techniques. It is observed that rapid thermal annealing treatment is superior in terms of improvement of the electrical characteristics compared to furnace annealing treatment. The lowest leakage current and defect concentration are obtained when rapid thermal annealing is employed

    Investigation of the effects of gamma radiation on the electrical properties of dilute GaAs1−xNx layers grown by Molecular Beam Epitaxy

    No full text
    This work reports the effect of gamma (γ-) irradiation on dilute GaAsN with nitrogen concentrations ranging from 0.2 to 1.2% with post-irradiation stability using Current–Voltage (I–V) and Deep Level Transient Spectroscopy (DLTS) measurements in the temperature range from 10 K to 450 K. The I–V results indicate that the irradiation effect was more pronounced in the samples with nitrogen concentration of 0.4%. Additionally, the irradiated samples showed an ideality factor higher than the as-grown samples. On the other hand, for temperatures above 265 K the barrier height of the irradiated samples with 0.8% nitrogen is higher than the as-grown samples. The DLTS measurements revealed that after irradiation the number of traps either decreased remained constant, or new traps are created depending on the concentration of nitrogen. For samples with N = 0.2% – 0.4% the number of traps after irradiation decreased, whereas for samples with N = 0.8% − 1.2 % the number of traps remained the same. However, the properties of some traps such as capture cross-sections and density increased by about 2 orders of magnitude. The origin of the defects present before and after irradiation are discussed and correlated

    Replacing protein via enteral nutrition in a stepwise approach in critically ill patients: the REPLENISH randomized clinical trial protocol

    No full text
    Abstract Background Protein intake is recommended in critically ill patients to mitigate the negative effects of critical illness-induced catabolism and muscle wasting. However, the optimal dose of enteral protein remains unknown. We hypothesize that supplemental enteral protein (1.2 g/kg/day) added to standard enteral nutrition formula to achieve high amount of enteral protein (range 2–2.4 g/kg/day) given from ICU day 5 until ICU discharge or ICU day 90 as compared to no supplemental enteral protein to achieve moderate amount enteral protein (0.8–1.2 g/kg/day) would reduce all-cause 90-day mortality in adult critically ill mechanically ventilated patients. Methods The REPLENISH (Replacing Protein Via Enteral Nutrition in a Stepwise Approach in Critically Ill Patients) trial is an open-label, multicenter randomized clinical trial. Patients will be randomized to the supplemental protein group or the control group. Patients in both groups will receive the primary enteral formula as per the treating team, which includes a maximum protein 1.2 g/kg/day. The supplemental protein group will receive, in addition, supplemental protein at 1.2 g/kg/day starting the fifth ICU day. The control group will receive the primary formula without supplemental protein. The primary outcome is 90-day all-cause mortality. Other outcomes include functional and quality of life assessments at 90 days. The trial will enroll 2502 patients. Discussion The study has been initiated in September 2021. Interim analysis is planned at one third and two thirds of the target sample size. The study is expected to be completed by the end of 2025. Trial registration ClinicalTrials.gov Identifier: NCT04475666 . Registered on July 17, 2020
    corecore