38 research outputs found

    Erythropoietin Selectively Attenuates Cytokine Production and Inflammation in Cerebral Ischemia by Targeting Neuronal Apoptosis

    Get PDF
    Ischemic brain injury resulting from stroke arises from primary neuronal losses and by inflammatory responses. Previous studies suggest that erythropoietin (EPO) attenuates both processes. Although EPO is clearly antiapoptotic for neurons after experimental stroke, it is unknown whether EPO also directly modulates EPO receptor (EPO-R)–expressing glia, microglia, and other inflammatory cells. In these experiments, we show that recombinant human EPO (rhEPO; 5,000 U/kg body weight, i.p.) markedly reduces astrocyte activation and the recruitment of leukocytes and microglia into an infarction produced by middle cerebral artery occlusion in rats. In addition, ischemia-induced production of the proinflammatory cytokines tumor necrosis factor, interleukin 6, and monocyte chemoattractant protein 1 concentration is reduced by >50% after rhEPO administration. Similar results were also observed in mixed neuronal-glial cocultures exposed to the neuronal-selective toxin trimethyl tin. In contrast, rhEPO did not inhibit cytokine production by astrocyte cultures exposed to neuronal homogenates or modulate the response of human peripheral blood mononuclear cells, rat glial cells, or the brain to lipopolysaccharide. These findings suggest that rhEPO attenuates ischemia-induced inflammation by reducing neuronal death rather than by direct effects upon EPO-R–expressing inflammatory cells

    identification of amino acid residues critical for the b cell growth promoting activity of hiv 1 matrix protein p17 variants

    Get PDF
    Abstract Background HIV-1 matrix protein p17 variants (vp17s) detected in HIV-1-infected patients with non-Hodgkin's lymphoma (HIV-NHL) display, differently from the wild-type protein (refp17), B cell growth-promoting activity. Biophysical analysis revealed that vp17s are destabilized as compared to refp17, motivating us to explore structure-function relationships. Methods We used: biophysical techniques (circular dichroism (CD), nuclear magnetic resonance (NMR) and thermal/GuHCL denaturation) to study protein conformation and stability; Surface plasmon resonance (SPR) to study interactions; Western blot to investigate signaling pathways; and Colony Formation and Soft Agar assays to study B cell proliferation and clonogenicity. Results By forcing the formation of a disulfide bridge between Cys residues at positions 57 and 87 we obtained a destabilized p17 capable of promoting B cell proliferation. This finding prompted us to dissect refp17 to identify the functional epitope. A synthetic peptide (F1) spanning from amino acid (aa) 2 to 21 was found to activate Akt and promote B cell proliferation and clonogenicity. Three positively charged aa (Arg15, Lys18 and Arg20) proved critical for sustaining the proliferative activity of both F1 and HIV-NHL-derived vp17s. Lack of any interaction of F1 with the known refp17 receptors suggests an alternate one involved in cell proliferation. Conclusions The molecular reasons for the proliferative activity of vp17s, compared to refp17, relies on the exposure of a functional epitope capable of activating Akt. General significance Our findings pave the way for identifying the receptor(s) responsible for B cell proliferation and offer new opportunities to identify novel treatment strategies in combating HIV-related NHL

    Expression of AMPA and NMDA receptor subunits in the cervical spinal cord of wobbler mice

    Get PDF
    BACKGROUND: The localisation of AMPA and NMDA receptor subunits was studied in a model of degeneration of cervical spinal motoneurons, the wobbler mouse. Cervical regions from early or late symptomatic wobbler mice (4 or 12 weeks of age) were compared to lumbar tracts (unaffected) and to those of healthy mice. RESULTS: No differences were found in the distribution of AMPA and NMDA receptor subunits at both ages. Western blots analysis showed a trend of reduction in AMPA and NMDA receptor subunits, mainly GluR1 and NR2A, exclusively in the cervical region of late symptomatic mice in the triton-insoluble post-synaptic fraction but not whole homogenates. Colocalisation experiments evidenced the expression of GluR1 and NR2A receptors in activated astrocytes from the cervical spinal cord of wobbler mice, GluR2 did not colocalise with GFAP positive cells. No differences were found in the expression of AMPA and NMDA receptor subunits in the lumbar tract of wobbler mice, where neither motoneuron loss nor reactive gliosis occurs. CONCLUSION: In late symptomatic wobbler mice altered levels of GluR1 and NR2A receptor subunits may be a consequence of motoneuron loss rather than an early feature of motoneuron vulnerability

    The Molecular Assembly of Amyloid Aβ Controls Its Neurotoxicity and Binding to Cellular Proteins

    Get PDF
    Accumulation of β-sheet-rich peptide (Aβ) is strongly associated with Alzheimer's disease, characterized by reduction in synapse density, structural alterations of dendritic spines, modification of synaptic protein expression, loss of long-term potentiation and neuronal cell death. Aβ species are potent neurotoxins, however the molecular mechanism responsible for Aβ toxicity is still unknown. Numerous mechanisms of toxicity were proposed, although there is no agreement about their relative importance in disease pathogenesis. Here, the toxicity of Aβ 1–40 and Aβ 1–42 monomers, oligomers or fibrils, was evaluated using the N2a cell line. A structure-function relationship between peptide aggregation state and toxic properties was established. Moreover, we demonstrated that Aβ toxic species cross the plasma membrane, accumulate in cells and bind to a variety of internal proteins, especially on the cytoskeleton and in the endoplasmatic reticulum (ER). Based on these data we suggest that numerous proteins act as Aβ receptors in N2a cells, triggering a multi factorial toxicity

    Nuclear ERK1/2 signaling potentiation enhances neuroprotection and cognition via Importinα1/KPNA2

    Get PDF
    Cell signaling is central to neuronal activity and its dysregulation may lead to neurodegeneration and cognitive decline. Here, we show that selective genetic potentiation of neuronal ERK signaling prevents cell death in vitro and in vivo in the mouse brain, while attenuation of ERK signaling does the opposite. This neuroprotective effect mediated by an enhanced nuclear ERK activity can also be induced by the novel cell penetrating peptide RB5. In vitro administration of RB5 disrupts the preferential interaction of ERK1 MAP kinase with importinα1/KPNA2 over ERK2, facilitates ERK1/2 nuclear translocation, and enhances global ERK activity. Importantly, RB5 treatment in vivo promotes neuroprotection in mouse models of Huntington's (HD), Alzheimer's (AD), and Parkinson's (PD) disease, and enhances ERK signaling in a human cellular model of HD. Additionally, RB5‐mediated potentiation of ERK nuclear signaling facilitates synaptic plasticity, enhances cognition in healthy rodents, and rescues cognitive impairments in AD and HD models. The reported molecular mechanism shared across multiple neurodegenerative disorders reveals a potential new therapeutic target approach based on the modulation of KPNA2‐ERK1/2 interactions

    Tetrahydro-β-carboline-Based Spirocyclic Lactam as Type II′ β-Turn: Application to the Synthesis and Biological Evaluation of Somatostatine Mimetics

    No full text
    The synthesis of novel spirocyclic lactams, embodying d-tryptophan (Trp) amino acid as the central core and acting as peptidomimetics, is presented. It relies on the strategic combination of Seebach's self-reproduction of chirality chemistry and Pictet-Spengler condensation as key steps. Investigation of the conformational behavior by molecular modeling, X-ray crystallography, and NMR and IR spectroscopies suggests very stable and highly predictable type II′ β-turn conformations for all compounds. Relying on this feature, we also pursued their application to two potential mimetics of the hormone somatostatin, a pharmaceutically relevant natural peptide, which contains a Trp-based type II′ β-turn pharmacophore

    Neuroprotection with the CXCL8 inhibitor repertaxin in transient brain ischemia

    No full text
    : Infiltration of polymorphonuclear neutrophils (PMNs) is thought to play a role in ischemic brain damage. The present study investigated the effect of repertaxin, a new noncompetitive allosteric inhibitor for the receptors of the inflammatory chemokine CXC ligand 8 (CXCL8)/interleukin-8 (IL-8), on PMN infiltration and tissue injury in rats. Cerebral ischemia was induced by permanent or transient occlusion of the middle cerebral artery and myeloperoxidase activity, a marker of PMN infiltration, and infarct volume were evaluated 24 h later. Repertaxin (15 mg/kg) was administered systemically at the time of ischemia and every 2 h for four times. In permanent ischemia repertaxin reduced PMN infiltration by 40% in the brain cortex but did not limit tissue damage. In transient ischemia (90-min ischemia followed by reperfusion), repertaxin inhibited PMN infiltration by 54% and gave 44% protection from tissue damage. Repertaxin had anti-inflammatory and neuroprotective effects also when given at reperfusion and even at 2 h of reperfusion. The protective effect of repertaxin did not interfere with brain levels of the chemokine. Since the PMN infiltration and its inhibition by repertaxin were comparable in the two models we conclude that reperfusion induces PMN activation, and inhibition of CXCL8 by repertaxin might be of pharmacological interest in transient ischemia

    Synthesis and binding properties of novel selective 5-HT3 receptor ligands

    Get PDF
    This work reports on the synthesis and affinities for the 5-HT3 versus the 5-HT4 receptor of new piperazinyl-substituted thienopyrimidine derivatives 20-45 with a view to identify potent and selective ligands for the 5-HT3 receptor. Some of the new compounds show good affinity for the 5-HT3 receptor and, notably, do not display any affinity for the 5-HT4 receptor. 4-(4-Methyl-1-piperazinyl)-2-methylthio-6,7-dihydro-5H-cyclopenta[4,5] thieno [2,3-d]pyrimidine 31 exhibits the highest affinity for the 5-HT3 receptor (K-i = 33 nM) and behaves as noncompetitive antagonist. (C) 2004 Elsevier Ltd. All rights reserved

    Proteomic profiling of cervical and lumbar spinal cord reveals potential protective mechanisms in the wobbler mouse, a model of motor neuron degeneration.

    No full text
    The wobbler mouse is a model of selective motor neuron degeneration in the cervical spinal cord. Comparing cervical and lumbar tracts of control and diseased mice at the early stage of pathology by proteomic analysis, we identified 31 proteins by peptide mass fingerprint after tryptic digestion and MALDI-TOF analysis, that were differently represented among the four experimental groups. In healthy mice, patterns of protein expression differed between cervical and lumbar tract: proteins of cellular energetic metabolism pathway showed lower expression in the cervical tract, while cellular trafficking proteins were overrepresented. In wobbler mice, these differences disappeared and the expression pattern was similar between cervical and lumbar spinal cord. We found that most of the proteins differentially regulated in wobbler with respect to control cervical tract were related to astrogliosis or involved in glutamate-glutamine cycle, energy transduction and redox functions. Proteins overrepresented in the wobbler lumbar spinal cord were cytoskeleton proteins and cellular transport proteins, in particular the vesicle fusing ATPase and the isoform 2 of syntaxin-binding protein 1, involved in vesicle trafficking. We suggest that overexpression of proteins involved in vesicle trafficking, together with proteins counteracting mitochondrial dysfunction can have neuroprotective effects, preserving lumbar spinal cord motor neurons in wobbler mice
    corecore