

Available online at www.sciencedirect.com

Bioorganic & Medicinal Chemistry 12 (2004) 3891-3901

Bioorganic & Medicinal Chemistry

Synthesis and binding properties of novel selective 5-HT₃ receptor ligands

Maria Modica,^{a,*} Giuseppe Romeo,^a Luisa Materia,^a Filippo Russo,^a Alfredo Cagnotto,^b Tiziana Mennini,^b Róbert Gáspár,^c George Falkay^c and Ferenc Fülöp^d

^aDipartimento di Scienze Farmaceutiche, Università di Catania, viale A. Doria 6, 95125 Catania, Italy ^bIstituto di Ricerche Farmacologiche 'Mario Negri', via Eritrea 62, 20157 Milano, Italy ^cDepartment of Pharmacodynamics and Biopharmacy, University of Szeged, H-6701 Szeged, POB 121, Hungary ^dInstitute of Pharmaceutical Chemistry, University of Szeged, H-6701 Szeged, POB 121, Hungary

> Received 30 May 2003; accepted 30 April 2004 Available online 2 June 2004

Abstract—This work reports on the synthesis and affinities for the 5-HT₃ versus the 5-HT₄ receptor of new piperazinyl-substituted thienopyrimidine derivatives **20–45** with a view to identify potent and selective ligands for the 5-HT₃ receptor. Some of the new compounds show good affinity for the 5-HT₃ receptor and, notably, do not display any affinity for the 5-HT₄ receptor. 4-(4-Methyl-1-piperazinyl)-2-methylthio-6,7-dihydro-5*H*-cyclopenta[4,5]thieno[2,3-*d*]pyrimidine **31** exhibits the highest affinity for the 5-HT₃ receptor ($K_i = 33 \text{ nM}$) and behaves as noncompetitive antagonist. © 2004 Elsevier Ltd. All rights reserved.

1. Introduction

The serotonin neurotransmitter is involved in a number of different physiological functions through its interaction with 14 types of receptors.¹ These are G-proteincoupled receptors, with the exception of the 5-HT₃, which is a ligand gated-ion channel receptor. 5-HT₃ receptor antagonists, such as ondansetron, granisetron, or tropisetron,² are used as antiemetic drugs to prevent vomiting associated with chemotherapy or radiationinduced emesis, but literature studies³ indicate that they could possess numerous other potential therapeutic applications in the control of pain or in the treatment of psychosis, memory impairment, depression, anxiety, schizophrenia, and drugs abuse. On the other hand, little is known about the therapeutic potential of 5-HT₃ receptor agonists although some potent and selective ligands with full agonistic properties⁴ were recently reported. It has been suggested that stimulation of the 5-HT₃ receptor modulates, in the central nervous system, the release of dopamine, cholecystokinin, and acetylcholine.⁵ Moreover, 5-HT₃ receptors are involved in the peripheral control of acethylcholine release of the distal colon.⁶

In recent years, we have been engaged in the preparation of piperazinyl-substituted thieno[2,3-d]pyrimidin-4(3H)one derivatives as 5-HT₃ receptor ligands.⁷ These compounds possess the three key pharmacophoric elements (an aromatic moiety, a hydrogen-bond acceptor and a basic amino group) required for interaction with the 5-HT₃ receptor and are structurally related to quipazine (Fig. 1), a potent ligand for the 5-HT₃ receptor.⁸ Among these thieno[2,3-d]pyrimidine derivatives, 3-amino-5,6dimethyl-2-[4-(1-phenylmethyl)-1-piperazinyl]thieno[2,3d]pyrimidin-4(3H)-one A (Fig. 1) exhibited the highest affinity and selectivity for the 5-HT₃ receptor (5-HT₃: $K_i = 3.92 \text{ nM}$; 5-HT₄: not active), behaving as a full agonist in the Bezold-Jarisch reflex assay.7 This result induced us to continue research in this field with the aim to obtain more potent and selective ligands for the 5-HT₃ receptor. The present work reports on the synthesis and 5-HT₃ receptor-binding properties of a series of new derivatives $\mathbf{B}^{9,10}$ (Fig. 1), which can be regarded as structural analogues of compound A. The new molecules maintain the thieno [2,3-d] pyrimidine scaffold as in A and exhibit the following structural variations: (i) the piperazine moiety at 4-position of the pyrimidine

Keywords: 5-HT₃ receptor; Ligands; Thieno[2,3-*d*]pyrimidine derivatives.

^{*} Corresponding author. Tel.: +39-095-7384010; fax: +39-095-222239; e-mail: mmodica@mbox.unict.it

Figure 1.

nucleus in place of the carbonyl group; (ii) in some compounds, 5- and 6-positions of the bicyclic system bear methyl groups (as in A); in others, a trimethylene or tetramethylene chain forms a third condensed ring, which, in some cases, is substituted with an ethoxycarbonyl group; (iii) 2-position of the pyrimidine is unsubstituted or bears a methylthio group.

The groups on N-4 of the piperazine ring (e.g., benzyl, 2-methoxyphenyl, phenyl, 2-pyrimidyl, methyl, and hydrogen) were the same as in a previous work.⁷ They were examined, together with the other structural modifications, with the aim to obtain more information on the structure–activity relationships in this new series.

2. Chemistry

Compounds 20–45 were prepared according to Scheme 1. Derivatives 3 and 4 were obtained by refluxing in acetone the corresponding β -amino esters of 4,5-disubstituted-thiophenes 1 and 2^{11} with benzoyl isothiocyanate, commercially available or prepared in situ. When refluxed in an ethanolic potassium hydroxide solution, 3 and 4 gave the respective monopotassium salts of the 5,6-disubstituted-2-thioxothieno[2,3-*d*]pyrimidinones 5 and 6. On acidification of the potassium salts 5 and 6 with concentrated hydrochloric acid, the corresponding thioxo compounds 8 and 9 were obtained, which confirmed the structures of salts 5 and 6. The 2-methylthio derivatives 10-12 were obtained by reaction of the potassium salts $5-7^{12}$ with methyl iodide in water at room temperature. The 4-chloro derivatives 14-18 were obtained by heating the corresponding 4-oxo derivatives 10-12 and 13¹³ with an excess of phosphorus oxychloride, according to a literature method.¹⁴ The 4-(1-piperazinyl)thieno[2,3-d]pyrimidine derivatives 20-45 were synthesized by refluxing in ethanol the 4-chloro derivatives 14–17, 18,¹⁵ and 19¹⁶ with piperazine or substituted

$$\begin{split} R_1\,,\,R_2 &= CH_3\,\,,\,CH_3\,;\,-(CH_2)_{3^-}\,;\\ &-CH(COOC_2H_5)CH_2CH_{2^-}\,;\\ &-CH(COOC_2H_5)CH_2CH_2CH_{2^-}\,.\\ R_3 &= H\,\,,\,SCH_3\,\,.\\ R_4 &= CH_2C_6H_5\,,\,C_6H_4OCH_3(o)\,,\,C_6H_5\,,\,pyrimidyl\,,\,CH_3\,,\,H\,\,. \end{split}$$

piperazines. The proposed structures for 3–12, 14–17, and 20–45 were confirmed by elemental analyses, and by the IR and ¹H NMR data (see Experimental section).

3. Pharmacology

The title compounds **20–45** were tested in in vitro binding assays to evaluate their affinity for the 5-HT₃ and the 5-HT₄ receptors, using [³H]LY 278584 or [³H]GR113808 as radioligand, respectively. Binding data, reported in Table 1, are expressed as K_i values.

Moreover, in order to evaluate the putative agonistic or antagonistic properties of new molecules, two of them (**31** and **33**) were tested in an in vitro functional assay on isolated guinea pig distal colon.¹⁷ Results are reported in Figure 2 and Table 2.

4. Results and discussion

The results of the binding tests, presented in Table 1, demonstrate that many of the title compounds (20, 24–27, 31–33, 38, 39, and 44) possess good affinities for the 5-HT₃ receptor and high selectivity over the 5-HT₄ receptor. In fact, none of the new derivatives displays measurable affinity for the latter receptor.

In this new series of derivatives the presence of the third unsubstituted cyclopentane ring fused with the thieno[2,3-*d*]pyrimidine system leads to the compounds with the best affinities (**31** and **33**, $K_i = 33$ and 70 nM, respectively); the affinity is lower when two methyl groups or a condensed ethoxycarbonyl cyclopentane are present at 5- and 6-positions of the thieno[2,3-*d*]pyrimidine system (**20**, **24**, **26**, **38**, and **39**, $K_i = 723$, 216, 114, 202, and 249 nM, respectively).

Scheme 1. Reagents and conditions: (a) $SCNCOC_6H_5$, acetone, reflux; (b) KOH, EtOH, reflux; (c) HCl, H₂O, rt; (d) CH₃I, H₂O, rt; (e) POCl₃, 150 °C; (f) unsubstituted or substituted piperazine, EtOH, K₂CO₃, reflux.

The best substituents on N-4 of the piperazine ring for the affinity at the 5-HT₃ receptor are a hydrogen and a methyl group (24, 26, 31, 33, 38, and 39, $K_i = 216$, 114, 33, 70, 202, and 249 nM, respectively), while the benzylpiperazine-substituted derivatives 20 and 27 display decreased affinities ($K_i = 723$ and 421 nM, respectively). The corresponding analogues 34 and 40, which bear an ethoxycarbonyl group on a fused cyclopentane and a cyclohexane ring at positions R₁ and R₂ of the thiophene nucleus, do not exhibit any measurable affinity for this receptor.

The introduction on compounds **31** and **33** of an ethoxycarbonyl group on the cyclopentane ring, as in **38** and **39**, is detrimental for affinity ($K_i = 202$ and 249 nM, respectively).

When the cyclopentane ring in **38** and **39** is enlarged to a cyclohexane ring, as in **44** and **45**, a notable drop in affinity ($K_i = 1791 \text{ nM}$ and not active, respectively) is seen.

Substitution on N-4 of the piperazine ring with a 2methoxyphenyl (**21**, **28**, **35**, and **41**), a phenyl (**22**, **29**, **36**, and **42**) or a 2-pyrimidyl nucleus (**23**, **30**, **37**, and **43**) leads to compounds without affinity for the 5-HT₃ receptor; this behavior was earlier reported for 3-amino-5,6-dimethylthieno[2,3-*d*]pyrimidin-4(3*H*)-one analogues⁷ in which the piperazine nucleus was at 2-position of the pyrimidine system.

Removal of the methylthio group at 2-position of the pyrimidine nucleus in 24 and 31 leads to 25 and 32,

which display lower affinities ($K_i = 341$ and 221 nM, respectively). Thus, the presence of the methylthio group seems to be important for the affinity, but its mode of interaction with the binding site is not clear.

This new series of thieno[2,3-*d*]pyrimidine derivatives possesses the key elements of the three-component pharmacophoric model proposed for the interaction of 5-HT₃ ligands structurally related to quipazine with the 5-HT₃ receptor-binding site:¹⁸ a charge-assisted hydrogen bond (N-4 of the piperazine nucleus), a hydrogenbond interaction (the nitrogen of the pyrimidine system), and an aromatic interaction (the thiophene nucleus). The location of the piperazine nucleus in a different position in comparison with quipazine and our previous derivatives⁷ could explain the lower affinities of these new compounds.

In this new series of derivatives, compounds with the best affinities are characterized by an unsubstituted piperazine or a methyl-substituted piperazine, a benzyl-substituted piperazine leading to compounds with lower affinity. This trend is peculiar for this series of derivatives because, in the quipazine-like ligands,¹⁹ the introduction of a benzyl moiety leads to compounds with higher affinity for the 5-HT₃ receptor with respect to the unsubstituted piperazine derivatives.

The presence of two methyl groups at 5- and 6-positions of the thieno[2,3-d] pyrimidine system in this new series of derivatives furnishes compounds with good affinity, which is increased when a third cyclopentane ring is fused with the thieno[2,3-d] pyrimidine system. On

Table 1. Binding properties of compounds 20-45 on 5-HT₃ and 5-HT₄ serotonin receptors

Compd	R ₁	\mathbf{R}_2	R ₄	K_{i} (nM) (±SD)	
				5-HT ₃	5-HT ₄
				[³ H]LY 278584	[³ H]GR 113808
				Rat cortex	Guinea pig striatum
20	CH_3	CH_3	CH ₂ C ₆ H ₅	723 ± 109	N.A. ^b
21	CH_3	CH_3	$C_6H_4OCH_3(o)$	N.A. ^b	N.A. ^b
22	CH_3	CH_3	C_6H_5	N.A. ^b	N.A. ^b
23	CH_3	CH_3	2-Pyrimidyl	N.A. ^b	N.A. ^b
24	CH_3	CH_3	CH ₃	216 ± 22	N.A. ^b
25 ^a	CH_3	CH_3	CH_3	341 ± 45.74	N.A. ^b
26	CH_3	CH_3	Н	114 ± 16	N.A. ^b
27	-(CH ₂) ₃ -		$CH_2C_6H_5$	421 ± 102	N.A. ^b
28	$-(CH_2)_3-$		$C_6H_4OCH_3(o)$	N.A. ^b	N.A. ^b
29	$-(CH_2)_3-$		C_6H_5	N.A. ^b	N.A. ^b
30	$-(CH_2)_3-$		2-Pyrimidyl	N.A. ^b	N.A. ^b
31	$-(CH_2)_3-$		CH_3	33 ± 5	N.A. ^b
32 ^a	-(CH ₂) ₃ -		CH_3	221 ± 27.67	N.A. ^b
33	-(CH ₂) ₃ -		Н	70 ± 7	N.A. ^b
34	$-CH(COOC_2H_5)CH_2CH_2-$		$CH_2C_6H_5$	N.A. ^b	N.A. ^b
35	$-CH(COOC_2H_5)CH_2CH_2-$		$C_6H_4OCH_3(o)$	N.A. ^b	N.A. ^b
36	$-CH(COOC_2H_5)CH_2CH_2-$		C_6H_5	N.A. ^b	N.A. ^b
37	$-CH(COOC_2H_5)CH_2CH_2-$		2-Pyrimidyl	N.A. ^b	N.A. ^b
38	$-CH(COOC_2H_5)CH_2CH_2-$		CH ₃	202 ± 32	N.A. ^b
39	$-CH(COOC_2H_5)CH_2CH_2-$		Н	249 ± 82	N.A. ^b
40	$-CH(COOC_2H_5)CH_2CH_2CH_2-$		$CH_2C_6H_5$	N.A. ^b	N.A. ^b
41	$-CH(COOC_2H_5)CH_2CH_2CH_2-$		$C_6H_4OCH_3(o)$	N.A. ^b	N.A. ^b
42	$-CH(COOC_2H_5)CH_2CH_2CH_2-$		C_6H_5	N.A. ^b	N.A. ^b
43	$-CH(COOC_2H_5)CH_2CH_2CH_2-$		2-Pyrimidyl	N.A. ^b	N.A. ^b
44	$-CH(COOC_2H_5)CH_2CH_2CH_2-$		CH_3	1791 ± 187	N.A. ^b
45	$-CH(COOC_2H_5)C$	$H_2CH_2CH_2-$	Н	N.A. ^b	N.A. ^b
	Serotonin			354 ± 97	79 ± 10

^a The methylthio group is replaced by a hydrogen. ^b <50% inhibition at 10^{-5} M.

Figure 2. The effect of 10 nM of tropisetron (trop), compound 31 and 33 on the contraction increasing action of selective 5-HT₃ agonist 2-Me-5-HT in the isolated guinea pig colon in vitro. The effect of 2-Me-5-HT was expressed as the percent of contraction increase compared to basal colon activity (n = 6).

the other hand, the enlargement of the fused ring to six atoms as well as the introduction of an ethoxycar-

Table 2. Change of effective concentration 50 (EC₅₀) and maximum effect (E_{max}) in contraction increasing effect of 2-Me-5-HT in the presence of 10 nM of tropisetron, compound 31 and 33 in the guinea pig colon in vitro

	EC_{50} (M) ± SEM ^a	E_{max} (%) ± SEM ^a
2-Me-5-HT	$1.2 \times 10^{-6} \pm 1.6 \times 10^{-7}$	145.4 ± 22.0
2-Me-5-HT + trop	$4.7 \times 10^{-6} \pm 1.1 \times 10^{-6b}$	$145.8 \pm 11.3^{\circ}$
2-Me-5-HT + 31	$1.4 \times 10^{-6} \pm 2.4 \times 10^{-7}$ c	85.7 ± 32.3^{d}
2-Me-5-HT + 33	$2.0 \times 10^{-6} \pm 3.8 \times 10^{-7c}$	79.5 ± 17.0^{d}

Level of significance is indicated next to the values compared to the 2-Me-5-HT values.

^a Standard error mean.

 $^{b}p < 0.01.$

°Not significant.

 $^{d} p < 0.05.$

bonyl group are detrimental for affinity at 5-HT₃ receptor, leading to very poor ligands or inactive compounds.

Compounds 31 and 33, which showed the highest affinities for the 5-HT₃ receptor, were also tested in vitro to evaluate their functional activities. Tropisetron (trop), a well-known 5-HT₃ antagonist, was used as reference compound. In the isolated guinea pig colon tropisetron (10 nM) shifted the dose response curve of the selective 5-HT₃ agonist 2-methyl-5-hydroxytryptamine (2-Me-5-HT) to the right, indicating its competitive antagonist properties (Fig. 2, Table 2). Compounds 31 and 33 (10 nM), however, did not cause any shift in the dose response curve, but elicited a decrease in maximum effect of 2-Me-5-HT, suggesting their character as noncompetitive antagonists. This result would suggest the possibility of an interaction of these compounds with a postulated modulatory binding site at the 5-HT₃ receptor.²⁰

In conclusion, a new series of thieno[2,3-*d*]pyrimidine derivatives as 5-HT₃ receptor ligands has been prepared. Some compounds, namely **31** and **33**, showed good affinity for the 5-HT₃ receptor coupled to a complete lack of affinity for the 5-HT₄ receptor. Moreover, results of in vitro functional assays indicate that **31** and **33**, unlike tropisetron, could be reported as noncompetitive antagonists. Further studies to better clarify the pharmacological profile of **31** and **33** are in progress.

5. Experimental section

Melting points were determined in open capillary tubes on a Gallenkamp M.p. apparatus and are uncorrected. Elemental analyses for C, H, N, and S were performed on a Fisons-Carlo Erba EA1108 Elemental Analyzer and were within 0.4% of the theoretical values. The IR spectra were recorded in KBr disks on a Perkin Elmer 1600 Series FT-IR spectrometer. ¹H NMR spectra were recorded in DMSO-d₆ solution at 200 MHz on a Varian Inova-Unity 200 spectrometer; chemical shifts (δ) are reported in ppm, with TMS as internal standard; coupling constants (J) are in Hertz. Signal multiplicities are denoted by s (singlet), d (doublet), t (triplet), q (quartet), br s (broad singlet), or m (multiplet). The purity of compounds was checked by TLC on Merck silica gel 60 F-254 plates. All commercial chemicals were purchased from Aldrich, Fluka, Merck, and Carlo Erba and were used without further purification.

5.1. 2-[(Benzoylaminothioxomethyl)amino]-5,6-dihydro-4*H*-cyclopenta[*b*]thiophene-3,4-dicarboxylic acid diethyl ester (3)

A mixture of NH₄NCS (0.64 g, 8.41 mmol) and benzoyl chloride (0.82 mL, 7.06 mmol) was refluxed in anhydrous acetone (10 mL) for 5 min. A solution of aminoester 1 (2 g, 7.06 mmol) in anhydrous acetone (25 mL) was added to the suspension and the mixture was refluxed during stirring for 1 h. After cooling, the suspension was concentrated under reduced pressure, and the precipitate was collected, washed with water, dried, and

recrystallized from ethanol. Yield: 1.25 g (40%); mp 184 °C; IR (KBr, cm⁻¹) 3261, 2971, 2942, 1712, 1681, 1564, 1534, 1334, 1219, 1185, 705. ¹H NMR (DMSO- d_6) δ 1.16 (t, J = 7 Hz, 3H), 1.26 (t, J = 7 Hz, 3H), 2.25–2.42 (m, 1H), 2.66–3.06 (m, 3H), 3.92–4.40 (m, 5H), 7.45–8.12 (m, 5H), 11.91 (s, 1H), 14.71 (s, 1H). Anal. C₂₁H₂₂N₂O₅S₂.

5.2. 2-[(Benzoylaminothioxomethyl)amino]-4,5,6,7-tetrahydrobenzo[*b*]thiophene-3,4-dicarboxylic acid diethyl ester (4)

This was prepared from the amino ester **2** by the same procedure as for **3**, and was recrystallized from ethanol. Yield: 2.07 g (64%); mp 170–171 °C; IR (KBr cm⁻¹) 3248, 2927, 1710, 1683, 1526, 1436, 1330, 1225, 1184, 1028, 708. ¹H NMR (DMSO- d_6) δ 1.17 (t, J = 7.2 Hz, 3H), 1.28 (t, J = 7.2 Hz, 3H), 1.55–2.18 (m, 4H), 2.61–2.85 (m, 2H), 3.90–4.48 (m, 5H), 7.50–8.18 (m, 5H), 11.90 (s, 1H), 14.74 (s, 1H). Anal. C₂₂H₂₄-N₂O₅S₂.

5.3. Monopotassium salt of ethyl 4-oxo-2-thioxo-3,5,6,7-tetrahydro-4*H*-cyclopenta[4,5]thieno[2,3-*d*]pyrimidine-5-carboxylate (5) and its thioxo derivative (8)

Benzoyl derivative **3** (1 g, 2.24 mmol) was added to a solution of KOH (0.25 g, 4.45 mmol) in absolute ethanol (13 mL) and the mixture was refluxed during stirring for 3 h. The solid was then collected while hot, washed with hot absolute ethanol and dried to obtain salt **5** (0.60 g, 80%). Potassium salt **5** (0.50 g, 1.49 mmol) was suspended in water (50 mL), acidified with concentrated hydrochloric acid, and stirred for 10 min at room temperature. The solid was collected, washed with water, dried, and recrystallized from ethanol. Yield: 0.17 g (39%); mp 260 °C (dec); IR (KBr cm⁻¹) 3430, 3068, 2898, 1718, 1668, 1548, 1376, 1202, 1157, 1021, 849. ¹H NMR (DMSO-*d*₆) δ 1.15 (t, J = 7.2 Hz, 3H), 2.27–2.47 (m, 1H), 2.69–3.04 (m, 3H), 3.90–4.21 (m, 3H), 12.37 (s, 1H), 13.40 (br s, 1H). Anal. C₁₂H₁₂N₂O₃S₂.

5.4. Monopotassium salt of ethyl 4-oxo-2-thioxo-3,4,5, 6,7,8-hexahydro[1]benzothieno[2,3-*d*]pyrimidine-5-car-boxylate (6) and its thioxo derivative (9)

Benzoyl derivative **4** (3 g, 6.51 mmol) was added to a solution of KOH (0.77 g, 13.72 mmol) in absolute ethanol (30 mL) and the mixture was refluxed during stirring for 6 h. After cooling, a small amount of the solvent was removed from the suspension under reduced pressure, and the solid was then collected, washed with a small amount of absolute ethanol, and dried to give salt **6** (2.22 g, 98%). A suspension of salt **6** (1 g, 2.87 mmol) in water (50 mL) was acidified with concentrated hydrochloric acid and stirred for 1 h at room temperature. The solid was collected, washed with water, dried, and recrystallized from ethanol. Yield: 0.55 g (62%); mp 234–236 °C; IR (KBr cm⁻¹) 3442, 3150, 3052, 1694, 1665, 1546, 1473, 1291, 1199, 1030, 867. ¹H NMR

(DMSO- d_6) δ 1.16 (t, J = 7 Hz, 3H), 1.59–2.08 (m, 4H), 2.60–2.81 (m, 2H), 3.85–3.97 (m, 1H), 4.05 (q, J = 7 Hz, 2H), 12.34 (s, 1H), 13.36 (s, 1H). Anal. C₁₃H₁₄N₂O₃S₂.

5.5. Ethyl 2-methylthio-4-oxo-3,5,6,7-tetrahydro-4*H*-cyclopenta[4,5]thieno[2,3-*d*]pyrimidine-5-carboxylate (10)

Methyl iodide (0.74 mL, 11.83 mmol) was added under stirring to a solution of monopotassium salt **5** (1.33 g, 3.98 mmol) in water (70 mL) and the mixture was stirred at room temperature for 1 h. The solid was then filtered off, washed with water, dried, and recrystallized from ethanol. Yield: 0.75 g (61%); mp 198–200 °C; IR (KBr cm⁻¹) 3066, 2968, 2940, 2803, 1733, 1652, 1565, 1315, 1178, 1015, 643. ¹H NMR (DMSO-*d*₆) δ 1.10 (t, J = 7.2 Hz, 3H), 2.22–2.42 (m, 1H), 2.47 (s, 3H), 2.63– 3.05 (m, 3H), 3.91–4.10 (m, 3H), 12.62 (s, 1H). Anal. C₁₃H₁₄N₂O₃S₂.

5.6. Ethyl 2-methylthio-4-oxo-3,4,5,6,7,8-hexahydro-[1]benzothieno[2,3-*d*]pyrimidine-5-carboxylate (11)

This was prepared from potassium salt **6** by the same procedure as for **10** and was recrystallized from ethanol. Yield: 0.67 g (52%); mp 224–226 °C; IR (KBr cm⁻¹) 3049, 2981, 1726, 1662, 1546, 1263, 1194, 1062, 1024, 857, 637. ¹H NMR (DMSO- d_6) δ 1.16 (t, J = 7.2 Hz, 3H), 1.61–2.15 (m, 4H), 2.53 (s, 3H), 2.67–2.91 (m, 2H), 3.92–4.26 (m, 3H), 12.62 (s, 1H). Anal. C₁₄H₁₆-N₂O₃S₂.

5.7. 2-Methylthio-3,5,6,7-tetrahydro-4*H*-cyclopenta-[4,5]thieno[2,3-*d*]pyrimidin-4-one (12)

This was prepared from potassium salt 7 by the same procedure as for **10** and was recrystallized from ethanol/dioxane. Yield: 0.37 g (39%); mp 182–183 °C (dec); IR (KBr cm⁻¹) 2917, 2847, 1665, 1552, 1408, 1304, 1270, 1191, 1009, 825, 640. ¹H NMR (DMSO- d_6) δ 2.42–2.59 (m, 2H), 2.65 (s, 3H), 2.92–3.07 (m, 4H), 12.80 (s, 1H). Anal. C₁₀H₁₀N₂OS₂.

5.8. Ethyl 4-chloro-2-methylthio-6,7-dihydro-5*H*-cyclopenta-[4,5]thieno[2,3-*d*]pyrimidine-5-carboxylate (14)

Phosphorus oxychloride (2.5 mL, 26.82 mmol) was added to **10** (0.50 g, 1.61 mmol) and the suspension was heated at 150 °C for 40 min during stirring. After cooling, the suspension was poured into cold water and neutralized with 10% NaOH solution. The sticky residue was collected after 1 day, washed with water, dried, and recrystallized from cyclohexane. Yield: 0.10 g (19%); mp 77–79 °C; IR (KBr cm⁻¹) 2968, 2924, 1729, 1558, 1475, 1409, 1265, 1235, 1143, 1047, 825. ¹H NMR (DMSO-*d*₆) δ 1.16 (t, J = 7.2 Hz, 3H), 2.41–2.55 (m, 1H), 2.57 (s, 3H), 2.78–3.20 (m, 3H), 4.05–4.29 (m, 3H). Anal. C₁₃H₁₃ClN₂O₂S₂.

5.9. Ethyl 4-chloro-2-methylthio-5,6,7,8-tetrahydro[1]benzothieno[2,3-*d*]pyrimidine-5-carboxylate (15)

This was prepared from methylthio derivative **11** by the same procedure as for **14** and was recrystallized from ethanol. Yield: 0.40 g (72%); mp 106–108 °C; IR (KBr cm⁻¹) 2932, 1724, 1538, 1475, 1389, 1327, 1275, 1228, 1157, 1121, 839. ¹H NMR (DMSO-*d*₆) δ 1.16 (t, J = 7.2 Hz, 3H), 1.47–2.30 (m, 4H), 2.57 (s, 3H), 2.70–3.03 (m, 2H), 3.95 (q, J = 7.2 Hz, 2H), 4.19–4.30 (m, 1H). Anal. C₁₄H₁₅ClN₂O₂S₂.

5.10. 4-Chloro-2-methylthio-6,7-dihydro-5*H*-cyclopenta[4,5]-thieno[2,3-*d*]pyrimidine (16)

This was prepared from methylthio derivative **12** by the same procedure as for **14** and was recrystallized from ethanol. Yield: 0.32 g (78%); mp 115–116 °C (dec); IR (KBr cm⁻¹) 2920, 2853, 1554, 1468, 1412, 1301, 1251, 1182, 1141, 1015, 819. ¹H NMR (DMSO- d_6) δ 2.34–2.55 (m, 2H), 2.58 (s, 3H), 2.96–3.12 (m, 4H). Anal. C₁₀H₉ClN₂S₂.

5.11. General procedure for the synthesis of 2-methylthio-(4-substituted-1-piperazinyl)thieno[2,3-*d*]pyrimidine derivatives 20–22, 24, 25, 27–29, 31, 32, 34–36, 38, 40–42, and 44

A mixture of the appropriate chloro derivatives 14-19 (2.05 mmol) and methyl, 2-methoxyphenyl, phenyl, or benzylpiperazine (4.10 mmol) was refluxed in absolute ethanol (20 mL) during stirring for 1–2 h. After cooling, a small amount of the solvent was removed under reduced pressure, water was added to the mixture, and after 1 or 2 days the solid product was collected, washed with water, dried, and recrystallized. For compound **21**, after cooling, a solid was obtained that was collected, washed with water, dried, and recrystallized.

5.12. 5,6-Dimethyl-2-methylthio-4-[4-(1-phenylmethyl)-1-piperazinyl]thieno[2,3-*d*]pyrimidine (20)

This was recrystallized from ethanol. Yield: 0.28 g (35%); mp 99–101 °C; IR (KBr cm⁻¹) 2824, 1548, 1498, 1424, 1355, 1250, 1132, 990, 853, 745, 670. ¹H NMR (DMSO- d_6) δ 2.32 (s, 3H), 2.37 (s, 3H), 2.46–2.59 (s+m, 3H+4H), 3.29–3.40 (m, 4H), 3.52 (s, 2H), 7.20–7.40 (m, 5H). Anal. C₂₀H₂₄N₄S₂.

5.13. 5,6-Dimethyl-2-methylthio-4-[4-(2-methoxyphenyl)-1-piperazinyl]thieno[2,3-*d*]pyrimidine (21)

This was recrystallized from ethanol. Yield: 0.54 g (66%); mp 123–125 °C; IR (KBr cm⁻¹) 2816, 1546, 1498, 1451, 1359, 1232, 1128, 1023, 986, 852, 744. ¹H NMR (DMSO- d_6) δ 2.39 (s, 6H), 2.52 (s, 3H), 3.08–3.20 (m, 4H), 3.43–3.58 (m, 4H), 3.80 (s, 3H), 6.84–7.05 (m, 4H). Anal. C₂₀H₂₄N₄OS₂.

5.14. 5,6-Dimethyl-2-methylthio-4-(4-phenyl-1-piperazinyl)thieno[2,3-*d*]pyrimidine (22)

This was recrystallized from ethanol. Yield: 0.39 g (51%); mp 138–140 °C; IR (KBr cm⁻¹) 2817, 1594, 1497, 1523, 1367, 1227, 1134, 983, 848, 761, 693. ¹H NMR (DMSO- d_6) δ 2.39 (s, 3H), 2.40 (s, 3H), 2.52 (s, 3H), 3.25–3.38 (m, 4H), 3.42–3.55 (m, 4H), 6.76–7.31 (m, 5H). Anal. C₁₉H₂₂N₄S₂.

5.15. 5,6-Dimethyl-4-(4-methyl-1-piperazinyl)-2-methyl-thiothieno[2,3-*d*]pyrimidine (24)

This was recrystallized from ethanol. Yield: 0.11 g (18%); mp 99–100 °C; IR (KBr cm⁻¹) 2921, 2845, 2792, 1499, 1449, 1409, 1357, 1252, 1136, 992, 856. ¹H NMR (DMSO- d_6) δ 2.23 (s, 3H), 2.34 (s, 3H), 2.38 (s, 3H), 2.45–2.61 (s+m, 3H+4H), 3.29–3.45 (m, 4H). Anal. C₁₄H₂₀N₄S₂.

5.16. 2-Methylthio-4-[4-(1-phenylmethyl)-1-piperazinyl]-6,7-dihydro-5*H*-cyclopenta[4,5]thieno[2,3-*d*]pyrimidine (27)

This was recrystallized from ethanol. Yield: 0.36 g (44%); mp 105–107 °C; IR (KBr cm⁻¹) 2927, 2814, 2711, 1564, 1445, 1394, 1301, 1170, 911, 742, 699. ¹H NMR (DMSO- d_6) δ 2.21–2.41 (m, 2H), 2.41–2.59 (s+m, 3H+4H), 2.83–3.00 (m, 4H), 3.40–3.62 (m, 6H), 7.21–7.40 (m, 5H). Anal. C₂₁H₂₄N₄S₂.

5.17. 4-[4-(2-Methoxyphenyl)-1-piperazinyl]-2-methylthio-6,7-dihydro-5*H*-cyclopenta[4,5]thieno[2,3-*d*]pyrimidine (28)

This was recrystallized from ethanol. Yield: 0.44 g (52%); mp 133–135 °C; IR (KBr cm⁻¹) 2915, 2840, 1584, 1446, 1497, 1364, 1230, 1148, 988, 826, 750. ¹H NMR (DMSO- d_6) δ 2.28–2.46 (m, 2H), 2.51 (s, 3H), 2.88–3.16 (m, 8H), 3.66–3.76 (m, 4H), 3.80 (s, 3H), 6.81–7.10 (m, 4H). Anal. C₂₁H₂₄N₄OS₂.

5.18. 2-Methylthio-4-(4-phenyl-1-piperazinyl)-6,7-dihydro-5*H*-cyclopenta[4,5]thieno[2,3-*d*]pyrimidine (29)

This was recrystallized from ethanol. Yield: 0.26 g (33%); mp 145–146 °C; IR (KBr cm⁻¹) 2923, 2845, 1595, 1492, 1441, 1363, 1232, 1147, 988, 753, 688. ¹H NMR (DMSO- d_6) δ 2.28–2.46 (m, 2H), 2.51 (s, 3H), 2.88–3.10 (m, 4H), 3.22–3.33 (m, 4H), 3.62–3.76 (m, 4H), 6.72–7.35 (m, 5H). Anal. C₂₀H₂₂N₄S₂.

5.19. 4-(4-Methyl-1-piperazinyl)-2-methylthio-6,7-dihydro-5*H*-cyclopenta[4,5]thieno[2,3-*d*]pyrimidine (31)

This was recrystallized from ethanol/water. Yield: 0.17 g (24%); mp 127–129 °C; IR (KBr cm⁻¹) 2920, 2847, 2794, 1540, 1495, 1449, 1387, 1268, 1143, 992, 824. ¹H NMR

(DMSO- d_6) δ 2.22 (s, 3H), 2.26–2.53 (m, 9H), 2.86–3.04 (m, 4H), 3.48–3.58 (m, 4H). Anal. C₁₅H₂₀N₄S₂·3/2H₂O.

5.20. Ethyl 2-methylthio-4-[4-(1-phenylmethyl)-1-piperazinyl]-6,7-dihydro-5*H*-cyclopenta[4,5]thieno[2,3-*d*]pyrimidine-5-carboxylate (34)

This was recrystallized from ethanol. Yield: 0.40 g (42%); mp 126–128 °C; IR (KBr cm⁻¹) 2932, 2811, 1729, 1550, 1493, 1445, 1318, 1171, 1130, 980, 733. ¹H NMR (DMSO- d_6) δ 1.13 (t, J = 7 Hz, 3H), 2.30–2.64 (m, 8H), 2.70–3.10 (m, 3H), 3.25–3.70 (s+m, 2H+4H), 4.03 (q, J = 7 Hz, 2H), 4.22–4.34 (m, 1H) 7.20–7.42 (m, 5H). Anal. C₂₄H₂₈N₄O₂S₂.

5.21. Ethyl 4-[4-(2-methoxyphenyl)-1-piperazinyl]-2-methylthio-6,7-dihydro-5*H*-cyclopenta[4,5]thieno[2,3-*d*]pyrimidine-5-carboxylate (35)

This was recrystallized from ethanol. Yield: 0.66 g (67%); mp 128–130 °C; IR (KBr cm⁻¹) 2918, 2828, 1718, 1496, 1449, 1364, 1237, 1142, 1033, 990, 753. ¹H NMR (DMSO- d_6) δ 1.11 (t, J = 7 Hz, 3H), 2.32–2.60 (m, 4H) 2.70–3.28 (m, 7H), 3.35–3.60 (m, 2H), 3.70–3.90 (m+s, 2H+3H), 4.04 (q, J = 7 Hz, 2H), 4.30–4.42 (m, 1H), 6.83–7.08 (m, 4H). Anal. C₂₄H₂₈N₄O₃S₂.

5.22. Ethyl 2-methylthio-4-(4-phenyl-1-piperazinyl)-6,7dihydro-5*H*-cyclopenta[4,5]thieno[2,3-*d*]pyrimidine-5-carboxylate (36)

This was recrystallized from ethanol/water. Yield: 0.20 g (21%); mp 142–144 °C; IR (KBr cm⁻¹) 2921, 2841, 1728, 1598, 1534, 1496, 1368, 1231, 1155, 987, 757. ¹H NMR (DMSO- d_6) δ 1.05 (t, J = 7 Hz, 3H), 2.30–2.62 (m, 4H), 2.72–2.98 (m, 1H), 2.99–3.28 (m, 4H), 3.32–3.60 (m, 4H), 3.68–3.84 (m, 2H), 4.01 (q, J = 7 Hz, 2H), 4.28–4.42 (m, 1H), 6.78–7.32 (m, 5H). Anal. C₂₃H₂₆N₄O₂S₂.

5.23. Ethyl 4-(4-methyl-1-piperazinyl)-2-methylthio-6,7dihydro-5*H*-cyclopenta[4,5]thieno[2,3-*d*]pyrimidine-5-carboxylate (38)

This was recrystallized from ethanol. Yield: 0.31 g (39%); mp 134–136 °C; IR (KBr cm⁻¹) 2975, 2924, 2832, 2789, 1734, 1537, 1491, 1397, 1170, 1136, 986. ¹H NMR (DMSO- d_6) δ 1.14 (t, J = 7 Hz, 3H), 2.20 (s, 3H), 2.25–2.58 (m, 8H), 2.71–2.95 (m, 1H), 2.95–3.10 (m, 2H), 3.25–3.41 (m, 2H), 3.54–3.71 (m, 2H), 4.04 (q, J = 7 Hz, 2H), 4.23–4.39 (m, 1H). Anal. C₁₈H₂₄N₄O₂S₂.

5.24. Ethyl 2-methylthio-4-[4-(1-phenylmethyl)-1-piperazinyl]-5,6,7,8-tetrahydro[1]benzothieno[2,3-*d*]pyrimidine-5-carboxylate (40)

This was recrystallized from ethanol. Yield: 0.80 g (81%); mp 140–141 °C; IR (KBr cm⁻¹) 2922, 2810, 1729,

1536, 1499, 1399, 1312, 1171, 1126, 984, 732. ¹H NMR (DMSO- d_6) δ 1.12 (t, J = 7.2 Hz, 3H), 1.61–1.88 (m, 3H), 2.18–2.45 (m, 3H), 2.50 (s, 3H), 2.55–2.75 (m, 2H), 2.78–2.90 (m, 2H), 2.97–3.15 (m, 2H), 3.30–3.50 (m, 2H), 3.51 (s, 2H, CH₂), 3.82–4.18 (m, 3H), 7.10–7.41 (m, 5H). Anal. C₂₅H₃₀N₄O₂S₂.

5.25. Ethyl 4-[4-(2-methoxyphenyl)-1-piperazinyl]-2-methylthio-5,6,7,8-tetrahydro[1]benzothieno[2,3-*d*]pyrimidine-5carboxylate (41)

This was recrystallized from ethanol. Yield: 0.71 g (70%); mp 152–154 °C; IR (KBr cm⁻¹) 2930, 2838, 1727, 1536, 1497, 1451, 1372, 1234, 1164, 999, 745. ¹H NMR (DMSO- d_6) δ 1.10 (t, J = 7 Hz, 3H), 1.63–1.98 (m, 3H), 2.20–2.35 (m, 1H), 2.54 (s, 3H), 2.80–3.05 (m, 4H), 3.12–3.31 (m, 4H), 3.45–3.65 (m, 2H), 3.79 (s, 3H), 3.87–4.18 (m, 3H), 6.85–7.05 (m, 4H). Anal. C₂₅H₃₀N₄O₃S₂.

5.26. Ethyl 2-methylthio-4-(4-phenyl-1-piperazinyl)-5,6,7,8-tetrahydro[1]benzothieno[2,3-*d*]pyrimidine-5-carboxylate (42)

This was recrystallized from ethanol. Yield: 0.50 g (52%); mp 128–130 °C; IR (KBr cm⁻¹) 2970, 2837, 1737, 1597, 1499, 1374, 1233, 1168, 984, 760, 690. ¹H NMR (DMSO- d_6) δ 1.03 (t, J = 7.2 Hz, 3H), 1.62–1.98 (m, 3H), 2.20–2.35 (m, 1H), 2.54 (s, 3H), 2.80–2.92 (m, 2H), 3.05–3.30 (m, 4H), 3.30–3.60 (m, 4H), 3.87–4.18 (m, 3H), 6.78–7.32 (m, 5H). Anal. C₂₄H₂₈N₄O₂S₂.

5.27. Ethyl 4-(4-methyl-1-piperazinyl)-2-methylthio-5,6,7,8-tetrahydro[1]benzothieno[2,3-*d*]pyrimidine-5-carboxylate (44)

This was recrystallized from ethanol/water. Yield: 0.33 g (40%); mp 129–130 °C; IR (KBr cm⁻¹) 2924, 2837, 1734, 1560, 1529, 1400, 1334, 1172, 988, 857, 772. ¹H NMR (DMSO- d_6) δ 1.13 (t, J = 7.2 Hz, 3H), 1.62–1.94 (m, 3H), 2.15–2.38 (m, 6H), 2.47–2.62 (m, 5H), 2.76–2.88 (m, 2H), 2.95–3.12 (m, 2H), 3.30–3.49 (m, 2H), 3.87–4.15 (m, 3H). Anal. C₁₉H₂₆N₄O₂S₂.

5.28. 5,6-Dimethyl-2-methylthio-4-[4-(2-pyrimidyl)-1-piperazinyl]thieno[2,3-*d*]pyrimidine (23)

A mixture of chloro derivative **18** (0.50 g, 2.04 mmol), 1-(2-pyrimidyl)piperazine dihydrochloride (0.53 g, 2.23 mmol), and potassium carbonate (0.56 g, 4.05 mmol) was refluxed in absolute ethanol (20 mL) during stirring for 40 min. After cooling, the precipitate was collected, washed with water, dried, and recrystallized from ethanol. Yield: 0.42 g (55%); mp 109–110 °C; IR (KBr cm⁻¹) 2848, 1585, 1548, 1497, 1446, 1352, 1249, 1139, 976, 860, 778. ¹H NMR (DMSO-*d*₆) δ 2.40 (s, 6H), 2.51 (s, 3H), 3.39–3.47 (m, 4H), 3.83–3.97 (m, 4H), 6.68 (t, J = 4.8 Hz, 1H), 8.40 (d, J = 4.8 Hz, 2H). Anal. C₁₇H₂₀N₆S₂.

5.29. 2-Methylthio-4-[4-(2-pyrimidyl)-1-piperazinyl]-6,7dihydro-5*H*-cyclopenta[4,5]thieno[2,3-*d*]pyrimidine (30)

It was prepared from chloro derivative **16** in the same manner as for **23**, but the refluxing time was 3 h. The compound was recrystallized from ethanol. Yield: 0.61 g (78%); mp 110–111 °C; IR (KBr cm⁻¹) 2846, 1588, 1544, 1489, 1440, 1352, 1292, 1253, 1147, 983, 794. ¹H NMR (DMSO- d_6) δ 2.29–2.46 (m, 2H), 2.51 (s, 3H), 2.89–3.14 (m, 4H), 3.60–3.68 (m, 4H), 3.84–3.94 (m, 4H), 6.69 (t, J = 4.6 Hz, 1H), 8.33 (d, J = 4.6 Hz, 2H). Anal. C₁₈H₂₀N₆S₂.

5.30. 5,6-Dimethyl-4-(4-methyl-1-piperazinyl)thieno[2,3*d*]pyrimidine (25)

A mixture of chloro derivative **19** (0.48 g, 2.42 mmol) and 1-methylpiperazine (0.54 mL, 4.87 mmol) was refluxed during stirring for 4 h in absolute ethanol (20 mL). After cooling, water was added, and the mixture was extracted with chloroform. The combined organic layer was dried (Na₂SO₄) and evaporated under reduced pressure. After the addition of diethyl ether, the product solidified, and was recrystallized from ethanol/water. Yield: 0.33 g (52%); mp 73–75 °C; IR (KBr cm⁻¹) 2920, 2839, 2793, 1533, 1502, 1433, 1366, 1285, 1258, 1137, 977. ¹H NMR (DMSO-*d*₆) δ 2.18 (s, 3H), 2.39 (s, 3H), 2.43 (s, 3H), 2.45–2.67 (m, 4H), 3.25–3.39 (m, 4H), 8.47 (s, 1H). Anal. C₁₃H₁₈N₄S.

5.31. 4-(4-Methyl-1-piperazinyl)-6,7-dihydro-5*H*-cyclopenta-[4,5]thieno[2,3-*d*]pyrimidine (32)

It was obtained from chloro derivative 17 by the same procedure as for 25. Chloro derivative 17 was prepared from 13 (0.56 g, 2.93 mmol) and phosphorus oxychloride (3 mL, 32.18 mmol), the suspension being heated at 150 °C during stirring for 2 h. After cooling, the suspension was poured into cold water and neutralized with 10% NaOH solution. The precipitate was collected, washed with water, dried, and used for the next step without further purification; yield: 0.35 g (57%).

Compound **32** was recrystallized from ethanol/water. Yield: 0.30 g (44%); mp 88–91 °C; IR (KBr cm⁻¹) 2936, 2848, 2795, 1545, 1496, 1444, 1363, 1290, 1262, 1142, 983. ¹H NMR (DMSO- d_6) δ 2.10–2.60 (m, 9H), 2.95–3.18 (m, 4H), 3.40–3.70 (m, 4H), 8.45 (s, 1H). Anal. C₁₄H₁₈N₄S·1/2H₂O.

5.32. 5,6-Dimethyl-2-methylthio-4-(1-piperazinyl)thieno-[2,3-*d*]pyrimidine (26)

A mixture of chloro derivative **18** (0.60 g, 2.45 mmol) and piperazine (1.06 g, 12.30 mmol) was refluxed during stirring for 3 h in absolute ethanol (20 mL). After cooling, the solid was eliminated by filtration, and the solution was diluted with water and extracted with chloroform, and the combined organic layer was dried (Na₂SO₄) and evaporated under reduced pressure. After

the addition of diethyl ether to the yellow oil, a solid compound was obtained, which was recrystallized from ethanol/water. Yield: 0.22 g (27%); mp 119–120 °C; IR (KBr cm⁻¹) 3302, 2914, 2806, 1502, 1419, 1354, 1255, 1204, 1125, 990, 852. ¹H NMR (DMSO- d_6) δ 2.33 (s, 3H), 2.37 (s, 3H), 2.50 (s, 3H), 2.78–2.80 (m, 4H), 3.12–3.38 (m, 4H). Anal. C₁₃H₁₈N₄O₂S₂.

5.33. 2-Methylthio-4-(1-piperazinyl)-6,7-dihydro-5*H*-cyclo-penta[4,5]thieno[2,3-*d*]pyrimidine (33)

A mixture of chloro derivative **16** (0.70 g, 2.73 mmol) and piperazine (1.17 g, 13.58 mmol) was refluxed in absolute ethanol (20 mL) during stirring for 3 h. After cooling, water was added to the solution to obtain a solid product, which was recrystallized from ethanol. Yield: 0.63 g (75%); mp 98–100 °C; IR (KBr cm⁻¹) 3293, 2841, 1519, 1500, 1446, 1384, 1289, 1205, 1134, 988, 826. ¹H NMR (DMSO- d_6) δ 2.26–2.44 (m, 2H), 2.49 (s, 3H), 2.76–3.04 (m, 8H), 3.41–3.52 (m, 4H). Anal. C₁₄H₁₈N₄S₂.

5.34. Ethyl 2-methylthio-4-[4-(2-pyrimidyl)-1-piperazinyl]-6,7-dihydro-5*H*-cyclopenta[4,5]thieno[2,3-*d*]pyrimidine-5carboxylate (37)

A mixture of chloro derivative 14 (1.80 g, 5.47 mmol), 1-(2-pyrimidyl)piperazine dihydrochloride (2.60 g, 10.96 mmol), and potassium carbonate (2.55 g, 18.45 mmol) was refluxed in absolute ethanol (50 mL) during stirring for 1 h. After cooling, the solid was eliminated by filtration and water was added to the solution. The precipitated product was filtered off, washed with water, and recrystallized from ethanol/ water. Yield: 1.50 g (60%); mp 138-140 °C; IR (KBr cm⁻¹) 2973, 2858, 1725, 1583, 1546, 1486, 1451, 1355, 1254, 1143, 979. ¹H NMR (DMSO- d_6) δ 1.06 (t, J = 7.2 Hz, 3H), 2.52 (s, 3H), 2.72–3.12 (m, 4H), 3.42– 3.55 (m, 2H), 3.62-3.82 (m, 4H), 3.90-4.15 (m, 4H), 4.32–4.42 (m, 1H), 6.68 (t, J = 4.8 Hz, 1H), 8.41 (d, J = 4.8 Hz, 2 H). Anal. $C_{21}H_{24}N_6O_2S_2$.

5.35. Ethyl 2-methylthio-4-(1-piperazinyl)-6,7-dihydro-5*H*-cyclopenta[4,5]thieno[2,3-*d*]pyrimidine-5-carboxylate (39)

A mixture of chloro derivative **14** (0.70 g, 2.13 mmol) and piperazine (0.91 g, 10.56 mmol) was refluxed in absolute ethanol (10 mL) during stirring for 5 h. After cooling, the solid was eliminated by filtration, and the solution was diluted with water and extracted with chloroform. The combined organic layer was dried (Na₂SO₄) and evaporated under reduced pressure. After the addition of diethyl ether and petroleum ether to the yellow sticky product, a solid compound was obtained, which was recrystallized from ethanol/water. Yield: 0.28 g (35%); mp 76–78 °C; IR (KBr cm⁻¹) 3273, 2931, 2827, 1732, 1541, 1494, 1410, 1319, 1235, 1172, 831; ¹H NMR (DMSO-*d*₆) δ 1.14 (t, *J* = 7.2 Hz, 3H), 2.28–2.58 (m, 4H), 2.63–3.12 (m, 5H), 3.22–3.70 (m, 6H), 4.06 (q,

J = 7.2 Hz, 2H), 4.25-4.35 (m, 1H). Anal. $C_{17}H_{22}N_4O_2S_2.$

5.36. Ethyl 2-methylthio-4-[4-(2-pyrimidyl)-1-piperazinyl]-5,6,7,8-tetrahydro[1]benzothieno[2,3-*d*]pyrimidine-5-carboxylate (43)

A mixture of chloro derivative 15 (0.70 g, 2.04 mmol), 1-(2-pyrimidyl)piperazine dihydrochloride (0.53 g, 2.23 mmol), and potassium carbonate (0.56 g, 4.05 mmol) was refluxed in absolute ethanol (20 mL) during stirring for 6h. After cooling, the precipitate was removed by filtration and water was added to the solution. The mixture was then extracted with chloroform, and the combined organic layer was dried (Na₂SO₄) and evaporated under reduced pressure. The sticky residue was purified by flash column chromatography (chloroform) and was solidified by the addition of diethyl ether and petroleum ether to the yellow oil. Yield: 0.31 g (32%); mp 114–116 °C; IR (KBr cm⁻¹) 2924, 1719, 1586, 1547, 1480, 1419, 1383, 1358, 1229, 1168, 977. ¹H NMR $(DMSO-d_6) \delta 1.03 (t, J = 7 Hz, 3H), 1.62-2.00 (m, 3H),$ 2.18–2.28 (m, 1H), 2.53 (s, 3H), 2.80–2.97 (m, 2H), 3.02– 3.20 (m, 2H), 3.30–3.58 (m, 2H), 3.62–3.80 (m, 2H), 3.90-4.10 (m, 5H), 6.69 (t, J = 4.6 Hz, 1H), 8.33 (d, J = 4.6 Hz, 2 H). Anal. $C_{22}H_{26}N_6O_2S_2$.

5.37. Ethyl 2-methylthio-4-(1-piperazinyl)-5,6,7,8-tetrahydro[1]benzothieno[2,3-*d*]pyrimidine-5-carboxylate (45)

A mixture of chloro derivative **15** (1.30 g, 3.79 mmol) and piperazine (1.62 g, 18.81 mmol) was refluxed in absolute ethanol (20 mL) during stirring for 3 h. After cooling, the solid was eliminated by filtration and the solution was diluted with water. After 2 days, the solid compound was collected and recrystallized from ethanol/water. Yield: 0.30 g (20%); mp 225 °C (dec); IR (KBr cm⁻¹) 2929, 1735, 1502, 1405, 1368, 1328, 1268, 1157, 988, 850. ¹H NMR (DMSO- d_6) δ 1.11 (t, J = 7 Hz, 3H), 1.62–1.95 (m, 3H), 2.19–2.31 (m, 1H), 2.52 (s, 3H), 2.61–2.75 (m, 2H), 2.78–3.05 (m, 6H), 3.24–3.43 (m, 2H), 3.80–4.10 (m, 3H). Anal. C₁₈H₂₄N₄O₂S₂.

6. In vitro binding assays

Male CRL:CD(SD)BR-COBS rats (weighing about 150 g, Charles River, Italy) and male CRL:(HA) BR albino guinea pigs (weighing about 300 g, Charles River, Italy) were killed by decapitation; their brains were rapidly dissected into the appropriate areas (rat cortex for 5-HT₃ and guinea pig striatum for 5-HT₄) and stored at -80 °C until the day of assay.

The tissues were homogenized in 50 vol of ice-cold Tris HCl, 50 mM, pH 7.4 containing 0.5 mM EDTA, and 10 mM MgSO₄ for 5-HT₃, or Hepes HCl, 50 mM, pH 7.4, for 5-HT₄, using an Ultra Turrax TP-1810 homogenizer $(2 \times 20 \text{ s})$, and homogenates were

centrifuged at 50,000g for 10 min (Beckman Avanti J-25 refrigerated centrifuge). Each pellet was resuspended in the same volume of fresh buffer, incubated at $37 \,^{\circ}$ C for 10 min, and centrifuged again at 50,000g for 10 min. The pellet was then washed once by resuspension in fresh buffer and centrifuged as before.

The pellet obtained was finally resuspended in the appropriate incubation buffer (Hepes HCl, 50 mM, pH 7.4, containing $10 \,\mu$ M pargyline for 5-HT₄, or Tris HCl, 50 mM, pH 7.4, containing $10 \,\mu$ M pargyline, 0.5 mM EDTA, 10 mM MgSO₄, 0.1% ascorbic acid, and 140 mM NaCl for 5-HT₃) just before the binding assay.

[³H]LY 278584²¹ (S.A. 84.0 Ci/mmol Amersham, for 5-HT₃) binding was assayed in a final incubation volume of 1 mL, consisting of 0.50 mL of tissue (16 mg/sample), 0.50 mL of the [³H]ligand (4 nM), and 0.02 mL of displacing agent or solvent; nonspecific binding was measured in the presence of $1 \mu M$ quipazine. [³H]GR 113808²² (S.A. 84.0 Ci/mmol Amersham, for 5-HT₄) binding was assayed in a final incubation volume of 1.0 mL, consisting of 0.5 mL of tissue (20 mg/sample), 0.5 mL of the [³H]ligand (0.1 nM), and 0.02 mL of displacing agent or solvent; nonspecific binding was measured in the presence of 10 µM serotonin. Incubation (30 min at 25 °C for 5-HT₃ or 30 min at 37 °C for 5-HT₄) was stopped by rapid filtration under vacuum through GF/B filters, which were then washed with 12 mL (4×3 times) of ice-cold Tris HCl, 50 mM, pH7.4, or Hepes HCl, 50 mM, pH 7.4, using a Brandel M-48R cell harvester. Dried filters were immersed in vials containing 4 mL of Ultima Gold MV (Packard) and counted in a Wallac 1409 liquid scintillation spectrometer with a counting efficiency of about 50%. Drugs were tested in triplicate at different concentrations (from 10^{-5} to 10^{-10} M) and dose-inhibition curves were analyzed by the Allfit²³ program to obtain the concentration of unlabeled drug that caused 50% inhibition of ligand binding, K_i values were derived from the IC₅₀ values.24

7. In vitro organ studies on isolated guinea pig colon

Animal experiments were carried out with the approval of the Hungarian Ethical Committee for Animal Research (registration number: IV/1813–1/2002).

The distal portion of the colon was removed from a Hartley guinea pig (400–500 g) starved 24 h before experiments. The colon was cleaned in Krebs-bicarbonate buffer (in mM: NaCl 118.4, KCl 4.7, CaCl₂ 2.5, NaHCO₃ 25, MgSO₄ 1.2, KH₂PO₄ 1.2, glucose 11.7; pH = 7.4) at room temperature and cut 2 cm segments. The segments were suspended longitudinally in an organ bath containing Krebs-bicarbonate buffer warmed to 37 °C and bubbled through with 95% O₂/5% CO₂. One gram of loading tension was applied; the tissues were left to be incubated for 1 h. Isometric contractions were detected by ISOSYS Data Acquisition System (Expe-

rimetria Ltd. Hungary). The contractile action of 5-HT₃ receptor selective agonist 2-Me-5-HT (Sigma, Hungary) was investigated by cumulative way. The result was expressed as the percent of contraction increase compared to basal colon activity. Compounds **31** and **33**, and the specific 5-HT₃ receptor antagonist tropisetron (Sigma, Hungary) were added to the bath 10 min before the application of 2-Me-5-HT in concentration of 10 nM. Dose–response curves, the contraction increasing effect, the changes in EC₅₀ and maximum inhibition, and the statistical analysis were calculated by Prism 2.0 software (GraphPad Software, USA).

References and notes

- 1. Alexander, S. P. H.; Mathie, A.; Peters, J. A. Trends *Pharmacol. Sci.* 2001, Nomenclature Supplement.
- 2. Gaster, L. M.; King, F. D. Med. Res. Rev. 1997, 17, 163.
- 3. Greenshaw, A. J.; Silverstone, P. H. Drugs 1997, 53, 20.
- Campiani, C.; Morelli, E.; Gemma, S.; Nacci, V.; Butini, S.; Hamon, M.; Novellino, E.; Greco, G.; Cagnotto, A.; Goegan, M.; Cervo, L.; Dalla Valle, F.; Fracasso, C.; Caccia, S.; Mennini, T. J. Med. Chem. 1999, 42, 4362.
- Gozlan, H. In Serotonin Receptors and their Ligands; Olivier, B., van Wijngaarden, I., Soudijn, W., Eds.; Elsevier Science B.V.: Amsterdam, Netherlands, 1997; pp 221–308.
- 6. Jin, J. G.; Foxx-Orenstein, A. E.; Grider, J. R. J. Pharm. Exp. Therap. 1999, 288, 93.
- Modica, M.; Santagati, M.; Guccione, S.; Russo, F.; Cagnotto, A.; Goegan, M.; Mennini, T. *Eur. J. Med. Chem.* 2001, *36*, 287.
- Rault, S.; Lancelot, J.; Prunier, H.; Robba, M.; Renard, P.; Delagrange, P.; Pfeiffer, B.; Caignard, D.; Guardiola-Lemaitre, B.; Hamon, M. J. Med. Chem. 1996, 39, 2068.
- Modica, M.; Santagati, M.; Russo, F.; Cagnotto, A.; Goegan, M.; Mennini, T.; Fülöp, F. *Abstracts of Papers*, Hungarian–German–Italian–Polish Joint Meeting on Medicinal Chemistry, Budapest, Hungary, September 2– 6, 2001.
- Modica, M.; Santagati, M.; Romeo, G.; Materia, L.; Russo, F.; Cagnotto, A.; Mennini, T. *Abstracts of Papers*, 16th National Meeting of the Medicinal Chemistry Division of the Italian Chemical Society, Sorrento, Italy, September 18–22, 2002.
- 11. Naumann, B.; Böhm, R.; Fülöp, F.; Bernáth, G. Pharmazie 1996, 51, 4.
- Dobosh, A. A.; Smolanka, I. V.; Khripak, S.M. U.S.S.R. 455,105 Patent 1,860,072, 1972; *Chem. Abstr.* 1975, 82, 171034.
- 13. Shvedov, V. I.; Ryzhkova, V. K.; Grinev, A. N. Khim. Geterotsikl. Soedin. 1967, 3, 459.
- 14. Boehm, R.; Pech, R.; Haubold, G.; Hannig, E. *Pharmazie* **1986**, *41*, 23.
- Jordis, U.; Sauter, F.; Siddiqi, S. M. Vestnik Slovenskega Kemijskega Drustva. 1986, 33, 217.
- Abdel-Fattah, A. M.; Aly, A. S.; Gad, F. A.; Hassan, N. A.; El-Gazzar, A. B. A. Phosphorus, Sulfur Silicon Related Elements 2000, 163, 1.
- 17. Briejer, M. R.; Akkermans, L. M.; Schuurkes, J. A. Arch. Int. Pharmacodyn. Ther. 1995, 329, 121.
- Cappelli, A.; Anzini, M.; Vomero, S.; Mennuni, L.; Makovec, F.; Doucet, E.; Hamon, M.; Bruni, G.; Romeo,

M. R.; Menziani, M. C.; De Benedetti, P. G.; Langer, T. J. Med. Chem. 1998, 41, 728.

- 19. Prunier, H.; Rault, S.; Lancelot, J.; Robba, M.; Renard, P.; Renard, P.; Delagrange, P.; Pfeiffer, B.; Caignard, D.; Misslin, R.; Guardiola-Lemaitre, B.; Hamon, M. J. Med. Chem. 1997, 40, 1808.
- 20. Vitalis, B.; Sebestyen, L.; Sike, M.; Solyom, S.; Harsing, L. G., Jr. Pharmacol. Res. 2001, 43, 291.
- 21. Miller, K.; Weisberg, E.; Fletcher, P. W.; Teitler, M.
- Synapse 1992, 58, 11.
 Grossman, C. J.; Kilpatrick, G. J.; Bunce, K. T. Br. J. Pharmacol. 1993, 109, 618.
- 23. De Lean, K. W.; Munson, P. J.; Rodbard, D. Am. J. Physiol. 1978, 235, 97.
- 24. Cheng, Y.; Prusoff, W. H. Biochem. Pharmacol. 1973, 22, 3099.