64 research outputs found

    Coronary angiography using spectral detector dual-energy CT:is it the time to assess myocardial first-pass perfusion?

    Get PDF
    Coronary computed tomography angiography (CCTA) represents a common approach to the diagnostic workup of patients with suspected coronary artery disease. Technological development has recently allowed the integration of conventional CCTA information with spectral data. Spectral CCTA used in clinical routine may allow for improving CCTA diagnostic performance by measuring myocardial iodine distribution as a marker of first-pass perfusion, thus providing additional functional information about coronary artery disease

    T1 relaxation:Chemo-physical fundamentals of magnetic resonance imaging and clinical applications

    Get PDF
    Abstract: A knowledge of the complex phenomena that regulate T1 signal on Magnetic Resonance Imaging is essential in clinical practice for a more effective characterization of pathological processes. The authors review the physical basis of T1 Relaxation Time and the fundamental aspects of physics and chemistry that can influence this parameter. The main substances (water, fat, macromolecules, methemoglobin, melanin, Gadolinium, calcium) that influence T1 and the different MRI acquisition techniques that can be applied to enhance their presence in diagnostic images are then evaluated. An extensive case illustration of the different phenomena and techniques in the areas of CNS, abdomino-pelvic, and osteoarticular pathology is also proposed. Critical relevance statement: T1 relaxation time is strongly influenced by numerous factors related to tissue characteristics and the presence in the context of the lesions of some specific substances. An examination of these phenomena with extensive MRI exemplification is reported. Key Points: The purpose of the paper is to illustrate the chemical-physical basis of T1 Relaxation Time. MRI methods in accordance with the various clinical indications are listed. Several examples of clinical application in abdominopelvic and CNS pathology are reported. Graphical Abstract: (Figure presented.)</p

    Dual-Energy CT Material Decomposition:The Value in the Detection of Lymph Node Metastasis from Breast Cancer

    Get PDF
    Purpose: To evaluate the diagnostic performance of a dual-energy computed tomography (DECT)-based material decomposition algorithm for iodine quantification and fat fraction analysis to detect lymph node metastases in breast cancer patients. Materials and Methods: 30 female patients (mean age, 63.12 ± 14.2 years) diagnosed with breast cancer who underwent pre-operative chest DECT were included. To establish a reference standard, the study correlated histologic repots after lymphadenectomy or confirming metastasis in previous/follow-up examinations. Iodine concentration and fat fraction were determined through region-of-interest measurements on venous DECT iodine maps. Receiver operating characteristic curve analysis was conducted to identify the optimal threshold for differentiating between metastatic and non-metastatic lymph nodes. Results: A total of 168 lymph nodes were evaluated, divided into axillary (metastatic: 46, normal: 101) and intramammary (metastatic: 10, normal: 11). DECT-based fat fraction values exhibited significant differences between metastatic (9.56 ± 6.20%) and non-metastatic lymph nodes (41.52 ± 19.97%) (p &lt; 0.0001). Absolute iodine concentrations showed no significant differences (2.25 ± 0.97 mg/mL vs. 2.08 ± 0.97 mg/mL) (p = 0.7999). The optimal fat fraction threshold for diagnosing metastatic lymph nodes was determined to be 17.75%, offering a sensitivity of 98% and a specificity of 94%. Conclusions: DECT fat fraction analysis emerges as a promising method for identifying metastatic lymph nodes, overcoming the morpho-volumetric limitations of conventional CT regarding lymph node assessment. This innovative approach holds potential for improving pre-operative lymph node evaluation in breast cancer patients, offering enhanced diagnostic accuracy.</p

    Dual-Energy CT Material Decomposition:The Value in the Detection of Lymph Node Metastasis from Breast Cancer

    Get PDF
    Purpose: To evaluate the diagnostic performance of a dual-energy computed tomography (DECT)-based material decomposition algorithm for iodine quantification and fat fraction analysis to detect lymph node metastases in breast cancer patients. Materials and Methods: 30 female patients (mean age, 63.12 ± 14.2 years) diagnosed with breast cancer who underwent pre-operative chest DECT were included. To establish a reference standard, the study correlated histologic repots after lymphadenectomy or confirming metastasis in previous/follow-up examinations. Iodine concentration and fat fraction were determined through region-of-interest measurements on venous DECT iodine maps. Receiver operating characteristic curve analysis was conducted to identify the optimal threshold for differentiating between metastatic and non-metastatic lymph nodes. Results: A total of 168 lymph nodes were evaluated, divided into axillary (metastatic: 46, normal: 101) and intramammary (metastatic: 10, normal: 11). DECT-based fat fraction values exhibited significant differences between metastatic (9.56 ± 6.20%) and non-metastatic lymph nodes (41.52 ± 19.97%) (p &lt; 0.0001). Absolute iodine concentrations showed no significant differences (2.25 ± 0.97 mg/mL vs. 2.08 ± 0.97 mg/mL) (p = 0.7999). The optimal fat fraction threshold for diagnosing metastatic lymph nodes was determined to be 17.75%, offering a sensitivity of 98% and a specificity of 94%. Conclusions: DECT fat fraction analysis emerges as a promising method for identifying metastatic lymph nodes, overcoming the morpho-volumetric limitations of conventional CT regarding lymph node assessment. This innovative approach holds potential for improving pre-operative lymph node evaluation in breast cancer patients, offering enhanced diagnostic accuracy.</p

    Spectral CT Imaging of Prosthetic Valve Embolization after Transcatheter Aortic Valve Implantation

    Get PDF
    Transcatheter heart valve (THV) embolization is a rare complication of transcatheter aortic valve implantation (TAVI) generally caused by malpositioning, sizing inaccuracies and pacing failures. The consequences are related to the site of embolization, ranging from a silent clinical picture when the device is stably anchored in the descending aorta to potentially fatal outcomes (e.g., obstruction of flow to vital organs, aortic dissection, thrombosis, etc.). Here, we present the case of a 65-year-old severely obese woman affected by severe aortic valve stenosis who underwent TAVI complicated by embolization of the device. The patient underwent spectral CT angiography that allowed for improved image quality by means of virtual monoenergetic reconstructions, permitting optimal pre-procedural planning. She was successfully re-treated with implantation of a second prosthetic valve a few weeks later.</p

    Accuracy and time efficiency of a novel deep learning algorithm for Intracranial Hemorrhage detection in CT Scans

    Get PDF
    Purpose: To evaluate a deep learning-based pipeline using a Dense-UNet architecture for the assessment of acute intracranial hemorrhage (ICH) on non-contrast computed tomography (NCCT) head scans after traumatic brain injury (TBI). Materials and methods: This retrospective study was conducted using a prototype algorithm that evaluated 502 NCCT head scans with ICH in context of TBI. Four board-certified radiologists evaluated in consensus the CT scans to establish the standard of reference for hemorrhage presence and type of ICH. Consequently, all CT scans were independently analyzed by the algorithm and a board-certified radiologist to assess the presence and type of ICH. Additionally, the time to diagnosis was measured for both methods. Results: A total of 405/502 patients presented ICH classified in the following types: intraparenchymal (n = 172); intraventricular (n = 26); subarachnoid (n = 163); subdural (n = 178); and epidural (n = 15). The algorithm showed high diagnostic accuracy (91.24%) for the assessment of ICH with a sensitivity of 90.37% and specificity of 94.85%. To distinguish the different ICH types, the algorithm had a sensitivity of 93.47% and a specificity of 99.79%, with an accuracy of 98.54%. To detect midline shift, the algorithm had a sensitivity of 100%. In terms of processing time, the algorithm was significantly faster compared to the radiologist’s time to first diagnosis (15.37 ± 1.85 vs 277 ± 14 s, p &lt; 0.001). Conclusion: A novel deep learning algorithm can provide high diagnostic accuracy for the identification and classification of ICH from unenhanced CT scans, combined with short processing times. This has the potential to assist and improve radiologists’ ICH assessment in NCCT scans, especially in emergency scenarios, when time efficiency is needed.</p

    Optimization of window settings for coronary arteries assessment using spectral CT-derived virtual monoenergetic imaging

    Get PDF
    Purpose: To determine the optimal window setting for virtual monoenergetic images (VMI) reconstructed from dual-layer spectral coronary computed tomography angiography (DE-CCTA) datasets. Material and methods: 50 patients (30 males; mean age 61.1 ± 12.4 years who underwent DE-CCTA from May 2021 to June 2022 for suspected coronary artery disease, were retrospectively included. Image quality assessment was performed on conventional images and VMI reconstructions at 70 and 40 keV. Objective image quality was assessed using contrast-to-noise ratio (CNR). Two independent observers manually identified the best window settings (B-W/L) for VMI 70 and VMI 40 visualization. B-W/L were then normalized with aortic attenuation using linear regression analysis to obtain the optimized W/L (O-W/L) settings. Additionally, subjective image quality was evaluated using a 5-point Likert scale, and vessel diameters were measured to examine any potential impact of different W/L settings. Results: VMI 40 demonstrated higher CNR values compared to conventional and VMI 70. B-W/L settings identified were 1180/280 HU for VMI 70 and 3290/900 HU for VMI 40. Subsequent linear regression analysis yielded O-W/L settings of 1155/270 HU for VMI 70 and 3230/880 HU for VMI 40. VMI 40 O-W/L received the highest scores for each parameter compared to conventional (all p &lt; 0.0027). Using O-W/L settings for VMI 70 and VMI 40 did not result in significant differences in vessel measurements compared to conventional images. Conclusion: Optimization of VMI requires adjustments in W/L settings. Our results recommend W/L settings of 1155/270 HU for VMI 70 and 3230/880 HU for VMI 40.</p

    Diagnostic accuracy of computed tomography coronary angiography in patients with a zero calcium score

    Get PDF
    To evaluate the diagnostic accuracy of 64-slice CT coronary angiography (CT-CA) for the detection of significant coronary artery stenosis in patients with zero on the Agatston Calcium Score (CACS). We enrolled 279 consecutive patients (96 male, mean age 48±12 years) with suspected coronary artery disease. Patients were symptomatic (n=208) or asymptomatic (n=71), and underwent conventional coronary angiography (CAG). For CT-CA we administered an IV bolus of 100 ml of iodinated contrast material. CT-CA was compared to CAG using a threshold for significant stenosis of ≤50%. The prevalence of disease demonstrated at CAG was 15% (1.4% in asymptomatic). The population at CAG showed no or non-significant disease in 85% (238/279), single vessel disease in 9% (25/279), and multi-vessel disease in 6% (16/279). Sensitivity, specificity, and positive and negative predictive values of CT-CA vs. CAG on the patient level were 100%, 95%, 76%, and 100% in the overall population and 100%, 100%, 100%, and 100% in asymptomatic patients, respectively. CT-CA proves high diagnostic performance in patients with or without symptoms and with zero CACS. The prevalence of significant disease detected by CT-CA was not negligible in asymptomatic patients. The role of CT-CA in asymptomatic patients remains uncertain

    Detailed stratified GWAS analysis for severe COVID-19 in four European populations

    Get PDF
    Given the highly variable clinical phenotype of Coronavirus disease 2019 (COVID-19), a deeper analysis of the host genetic contribution to severe COVID-19 is important to improve our understanding of underlying disease mechanisms. Here, we describe an extended genome-wide association meta-analysis of a well-characterized cohort of 3255 COVID-19 patients with respiratory failure and 12 488 population controls from Italy, Spain, Norway and Germany/Austria, including stratified analyses based on age, sex and disease severity, as well as targeted analyses of chromosome Y haplotypes, the human leukocyte antigen region and the SARS-CoV-2 peptidome. By inversion imputation, we traced a reported association at 17q21.31 to a ~0.9-Mb inversion polymorphism that creates two highly differentiated haplotypes and characterized the potential effects of the inversion in detail. Our data, together with the 5th release of summary statistics from the COVID-19 Host Genetics Initiative including non-Caucasian individuals, also identified a new locus at 19q13.33, including NAPSA, a gene which is expressed primarily in alveolar cells responsible for gas exchange in the lung.S.E.H. and C.A.S. partially supported genotyping through a philanthropic donation. A.F. and D.E. were supported by a grant from the German Federal Ministry of Education and COVID-19 grant Research (BMBF; ID:01KI20197); A.F., D.E. and F.D. were supported by the Deutsche Forschungsgemeinschaft Cluster of Excellence ‘Precision Medicine in Chronic Inflammation’ (EXC2167). D.E. was supported by the German Federal Ministry of Education and Research (BMBF) within the framework of the Computational Life Sciences funding concept (CompLS grant 031L0165). D.E., K.B. and S.B. acknowledge the Novo Nordisk Foundation (NNF14CC0001 and NNF17OC0027594). T.L.L., A.T. and O.Ö. were funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), project numbers 279645989; 433116033; 437857095. M.W. and H.E. are supported by the German Research Foundation (DFG) through the Research Training Group 1743, ‘Genes, Environment and Inflammation’. L.V. received funding from: Ricerca Finalizzata Ministero della Salute (RF-2016-02364358), Italian Ministry of Health ‘CV PREVITAL’—strategie di prevenzione primaria cardiovascolare primaria nella popolazione italiana; The European Union (EU) Programme Horizon 2020 (under grant agreement No. 777377) for the project LITMUS- and for the project ‘REVEAL’; Fondazione IRCCS Ca’ Granda ‘Ricerca corrente’, Fondazione Sviluppo Ca’ Granda ‘Liver-BIBLE’ (PR-0391), Fondazione IRCCS Ca’ Granda ‘5permille’ ‘COVID-19 Biobank’ (RC100017A). A.B. was supported by a grant from Fondazione Cariplo to Fondazione Tettamanti: ‘Bio-banking of Covid-19 patient samples to support national and international research (Covid-Bank). This research was partly funded by an MIUR grant to the Department of Medical Sciences, under the program ‘Dipartimenti di Eccellenza 2018–2022’. This study makes use of data generated by the GCAT-Genomes for Life. Cohort study of the Genomes of Catalonia, Fundació IGTP (The Institute for Health Science Research Germans Trias i Pujol) IGTP is part of the CERCA Program/Generalitat de Catalunya. GCAT is supported by Acción de Dinamización del ISCIII-MINECO and the Ministry of Health of the Generalitat of Catalunya (ADE 10/00026); the Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR) (2017-SGR 529). M.M. received research funding from grant PI19/00335 Acción Estratégica en Salud, integrated in the Spanish National RDI Plan and financed by ISCIII-Subdirección General de Evaluación and the Fondo Europeo de Desarrollo Regional (European Regional Development Fund (FEDER)-Una manera de hacer Europa’). B.C. is supported by national grants PI18/01512. X.F. is supported by the VEIS project (001-P-001647) (co-funded by the European Regional Development Fund (ERDF), ‘A way to build Europe’). Additional data included in this study were obtained in part by the COVICAT Study Group (Cohort Covid de Catalunya) supported by IsGlobal and IGTP, European Institute of Innovation & Technology (EIT), a body of the European Union, COVID-19 Rapid Response activity 73A and SR20-01024 La Caixa Foundation. A.J. and S.M. were supported by the Spanish Ministry of Economy and Competitiveness (grant numbers: PSE-010000-2006-6 and IPT-010000-2010-36). A.J. was also supported by national grant PI17/00019 from the Acción Estratégica en Salud (ISCIII) and the European Regional Development Fund (FEDER). The Basque Biobank, a hospital-related platform that also involves all Osakidetza health centres, the Basque government’s Department of Health and Onkologikoa, is operated by the Basque Foundation for Health Innovation and Research-BIOEF. M.C. received Grants BFU2016-77244-R and PID2019-107836RB-I00 funded by the Agencia Estatal de Investigación (AEI, Spain) and the European Regional Development Fund (FEDER, EU). M.R.G., J.A.H., R.G.D. and D.M.M. are supported by the ‘Spanish Ministry of Economy, Innovation and Competition, the Instituto de Salud Carlos III’ (PI19/01404, PI16/01842, PI19/00589, PI17/00535 and GLD19/00100) and by the Andalussian government (Proyectos Estratégicos-Fondos Feder PE-0451-2018, COVID-Premed, COVID GWAs). The position held by Itziar de Rojas Salarich is funded by grant FI20/00215, PFIS Contratos Predoctorales de Formación en Investigación en Salud. Enrique Calderón’s team is supported by CIBER of Epidemiology and Public Health (CIBERESP), ‘Instituto de Salud Carlos III’. J.C.H. reports grants from Research Council of Norway grant no 312780 during the conduct of the study. E.S. reports grants from Research Council of Norway grant no. 312769. The BioMaterialBank Nord is supported by the German Center for Lung Research (DZL), Airway Research Center North (ARCN). The BioMaterialBank Nord is member of popgen 2.0 network (P2N). P.K. Bergisch Gladbach, Germany and the Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany. He is supported by the German Federal Ministry of Education and Research (BMBF). O.A.C. is supported by the German Federal Ministry of Research and Education and is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy—CECAD, EXC 2030–390661388. The COMRI cohort is funded by Technical University of Munich, Munich, Germany. This work was supported by grants of the Rolf M. Schwiete Stiftung, the Saarland University, BMBF and The States of Saarland and Lower Saxony. K.U.L. is supported by the German Research Foundation (DFG, LU-1944/3-1). Genotyping for the BoSCO study is funded by the Institute of Human Genetics, University Hospital Bonn. F.H. was supported by the Bavarian State Ministry for Science and Arts. Part of the genotyping was supported by a grant to A.R. from the German Federal Ministry of Education and Research (BMBF, grant: 01ED1619A, European Alzheimer DNA BioBank, EADB) within the context of the EU Joint Programme—Neurodegenerative Disease Research (JPND). Additional funding was derived from the German Research Foundation (DFG) grant: RA 1971/6-1 to A.R. P.R. is supported by the DFG (CCGA Sequencing Centre and DFG ExC2167 PMI and by SH state funds for COVID19 research). F.T. is supported by the Clinician Scientist Program of the Deutsche Forschungsgemeinschaft Cluster of Excellence ‘Precision Medicine in Chronic Inflammation’ (EXC2167). C.L. and J.H. are supported by the German Center for Infection Research (DZIF). T.B., M.M.B., O.W. und A.H. are supported by the Stiftung Universitätsmedizin Essen. M.A.-H. was supported by Juan de la Cierva Incorporacion program, grant IJC2018-035131-I funded by MCIN/AEI/10.13039/501100011033. E.C.S. is supported by the Deutsche Forschungsgemeinschaft (DFG; SCHU 2419/2-1).Peer reviewe

    Detailed stratified GWAS analysis for severe COVID-19 in four European populations

    Get PDF
    Given the highly variable clinical phenotype of Coronavirus disease 2019 (COVID-19), a deeper analysis of the host genetic contribution to severe COVID-19 is important to improve our understanding of underlying disease mechanisms. Here, we describe an extended GWAS meta-analysis of a well-characterized cohort of 3,260 COVID-19 patients with respiratory failure and 12,483 population controls from Italy, Spain, Norway and Germany/Austria, including stratified analyses based on age, sex and disease severity, as well as targeted analyses of chromosome Y haplotypes, the human leukocyte antigen (HLA) region and the SARS-CoV-2 peptidome. By inversion imputation, we traced a reported association at 17q21.31 to a highly pleiotropic ∼0.9-Mb inversion polymorphism and characterized the potential effects of the inversion in detail. Our data, together with the 5th release of summary statistics from the COVID-19 Host Genetics Initiative, also identified a new locus at 19q13.33, including NAPSA, a gene which is expressed primarily in alveolar cells responsible for gas exchange in the lung.Andre Franke and David Ellinghaus were supported by a grant from the German Federal Ministry of Education and Research (01KI20197), Andre Franke, David Ellinghaus and Frauke Degenhardt were supported by the Deutsche Forschungsgemeinschaft Cluster of Excellence “Precision Medicine in Chronic Inflammation” (EXC2167). David Ellinghaus was supported by the German Federal Ministry of Education and Research (BMBF) within the framework of the Computational Life Sciences funding concept (CompLS grant 031L0165). David Ellinghaus, Karina Banasik and Søren Brunak acknowledge the Novo Nordisk Foundation (grant NNF14CC0001 and NNF17OC0027594). Tobias L. Lenz, Ana Teles and Onur Özer were funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), project numbers 279645989; 433116033; 437857095. Mareike Wendorff and Hesham ElAbd are supported by the German Research Foundation (DFG) through the Research Training Group 1743, "Genes, Environment and Inflammation". This project was supported by a Covid-19 grant from the German Federal Ministry of Education and Research (BMBF; ID: 01KI20197). Luca Valenti received funding from: Ricerca Finalizzata Ministero della Salute RF2016-02364358, Italian Ministry of Health ""CV PREVITAL – strategie di prevenzione primaria cardiovascolare primaria nella popolazione italiana; The European Union (EU) Programme Horizon 2020 (under grant agreement No. 777377) for the project LITMUS- and for the project ""REVEAL""; Fondazione IRCCS Ca' Granda ""Ricerca corrente"", Fondazione Sviluppo Ca' Granda ""Liver-BIBLE"" (PR-0391), Fondazione IRCCS Ca' Granda ""5permille"" ""COVID-19 Biobank"" (RC100017A). Andrea Biondi was supported by the grant from Fondazione Cariplo to Fondazione Tettamanti: "Biobanking of Covid-19 patient samples to support national and international research (Covid-Bank). This research was partly funded by a MIUR grant to the Department of Medical Sciences, under the program "Dipartimenti di Eccellenza 2018–2022". This study makes use of data generated by the GCAT-Genomes for Life. Cohort study of the Genomes of Catalonia, Fundació IGTP. IGTP is part of the CERCA Program / Generalitat de Catalunya. GCAT is supported by Acción de Dinamización del ISCIIIMINECO and the Ministry of Health of the Generalitat of Catalunya (ADE 10/00026); the Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR) (2017-SGR 529). Marta Marquié received research funding from ant PI19/00335 Acción Estratégica en Salud, integrated in the Spanish National RDI Plan and financed by ISCIIISubdirección General de Evaluación and the Fondo Europeo de Desarrollo Regional (FEDER-Una manera de hacer Europa").Beatriz Cortes is supported by national grants PI18/01512. Xavier Farre is supported by VEIS project (001-P-001647) (cofunded by European Regional Development Fund (ERDF), “A way to build Europe”). Additional data included in this study was obtained in part by the COVICAT Study Group (Cohort Covid de Catalunya) supported by IsGlobal and IGTP, EIT COVID-19 Rapid Response activity 73A and SR20-01024 La Caixa Foundation. Antonio Julià and Sara Marsal were supported by the Spanish Ministry of Economy and Competitiveness (grant numbers: PSE-010000-2006-6 and IPT-010000-2010-36). Antonio Julià was also supported the by national grant PI17/00019 from the Acción Estratégica en Salud (ISCIII) and the FEDER. The Basque Biobank is a hospitalrelated platform that also involves all Osakidetza health centres, the Basque government's Department of Health and Onkologikoa, is operated by the Basque Foundation for Health Innovation and Research-BIOEF. Mario Cáceres received Grants BFU2016-77244-R and PID2019-107836RB-I00 funded by the Agencia Estatal de Investigación (AEI, Spain) and the European Regional Development Fund (FEDER, EU). Manuel Romero Gómez, Javier Ampuero Herrojo, Rocío Gallego Durán and Douglas Maya Miles are supported by the “Spanish Ministry of Economy, Innovation and Competition, the Instituto de Salud Carlos III” (PI19/01404, PI16/01842, PI19/00589, PI17/00535 and GLD19/00100), and by the Andalussian government (Proyectos Estratégicos-Fondos Feder PE-0451-2018, COVID-Premed, COVID GWAs). The position held by Itziar de Rojas Salarich is funded by grant FI20/00215, PFIS Contratos Predoctorales de Formación en Investigación en Salud. Enrique Calderón's team is supported by CIBER of Epidemiology and Public Health (CIBERESP), "Instituto de Salud Carlos III". Jan Cato Holter reports grants from Research Council of Norway grant no 312780 during the conduct of the study. Dr. Solligård: reports grants from Research Council of Norway grant no 312769. The BioMaterialBank Nord is supported by the German Center for Lung Research (DZL), Airway Research Center North (ARCN). The BioMaterialBank Nord is member of popgen 2.0 network (P2N). Philipp Koehler has received non-financial scientific grants from Miltenyi Biotec GmbH, Bergisch Gladbach, Germany, and the Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany. He is supported by the German Federal Ministry of Education and Research (BMBF).Oliver A. Cornely is supported by the German Federal Ministry of Research and Education and is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy – CECAD, EXC 2030 – 390661388. The COMRI cohort is funded by Technical University of Munich, Munich, Germany. Genotyping was performed by the Genotyping laboratory of Institute for Molecular Medicine Finland FIMM Technology Centre, University of Helsinki. This work was supported by grants of the Rolf M. Schwiete Stiftung, the Saarland University, BMBF and The States of Saarland and Lower Saxony. Kerstin U. Ludwig is supported by the German Research Foundation (DFG, LU-1944/3-1). Genotyping for the BoSCO study is funded by the Institute of Human Genetics, University Hospital Bonn. Frank Hanses was supported by the Bavarian State Ministry for Science and Arts. Part of the genotyping was supported by a grant to Alfredo Ramirez from the German Federal Ministry of Education and Research (BMBF, grant: 01ED1619A, European Alzheimer DNA BioBank, EADB) within the context of the EU Joint Programme – Neurodegenerative Disease Research (JPND). Additional funding was derived from the German Research Foundation (DFG) grant: RA 1971/6-1 to Alfredo Ramirez. Philip Rosenstiel is supported by the DFG (CCGA Sequencing Centre and DFG ExC2167 PMI and by SH state funds for COVID19 research). Florian Tran is supported by the Clinician Scientist Program of the Deutsche Forschungsgemeinschaft Cluster of Excellence “Precision Medicine in Chronic Inflammation” (EXC2167). Christoph Lange and Jan Heyckendorf are supported by the German Center for Infection Research (DZIF). Thorsen Brenner, Marc M Berger, Oliver Witzke und Anke Hinney are supported by the Stiftung Universitätsmedizin Essen. Marialbert Acosta-Herrera was supported by Juan de la Cierva Incorporacion program, grant IJC2018-035131-I funded by MCIN/AEI/10.13039/501100011033. Eva C Schulte is supported by the Deutsche Forschungsgemeinschaft (DFG; SCHU 2419/2-1).N
    corecore