11 research outputs found

    COVID-19 in Patients with Multiple Sclerosis: Associations with Disease-Modifying Therapies

    No full text
    Background Disease-modifying therapies (DMTs) for multiple sclerosis (MS) target immunity and have the potential to increase the risk of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection and alter its clinical course. We assessed these risks in patients with MS (PwMS). Objective The objective of this study was to describe the overall risk of coronavirus disease 2019 (COVID-19) infection, severe disease course, and potential population-level predictors of COVID-19 infection in PwMS, and to provide a context using a cohort of patients with systemic lupus erythematosus (SLE). In addition, the association of different MS DMTs with the incidence and clinical course of COVID-19 was evaluated. Safety data from the Biogen Global Safety Database are also presented on reported cases of COVID-19 in patients treated with Biogen MS therapies. Methods The IBM(R) Explorys electronic health record database of > 72,000,000 patients from US healthcare networks identified patients with MS or SLE, with and without polymerase chain reaction-confirmed COVID-19. COVID-19 cumulative incidence, hospitalization, and deaths among DMT classes were compared using logistic regression (adjusted for age, sex, body mass index, comorbidities, and race/ethnicity). As a secondary data source to assess safety data, COVID-19 reports for Biogen MS therapies were extracted and described from Biogen's Global Safety Database. Results 30,478 PwMS with an open DMT prescription were identified within Explorys; 344 were COVID-19 positive. The most significant risk factors for acquiring COVID-19 were comorbidity score >= 1, body mass index >= 30, and Black/African ancestry. Similar risk factors were also identified for patients with SLE. Patients with MS were less likely to develop COVID-19 when treated with interferons (0.61%) and glatiramer acetate (0.51%), vs all other MS DMTs (both p < 0.001); anti-CD20 therapy was associated with the highest risk (3.45%; p < 0.0001). In the Biogen Global Safety Database, we identified 1217 patients who were COVID-19 positive treated with intramuscular interferon beta-1a, peginterferon beta-1a, natalizumab, dimethyl fumarate, diroximel fumarate, or fampridine. Conclusions Comorbidities, obesity, and Black/African ancestry, but not age, were associated with a higher risk of SARS-CoV-2 infection in PwMS. Interferons and glatiramer acetate were associated with a reduced COVID-19 risk, whereas anti-CD20 therapies were associated with an increased risk, within the treated MS cohort. COVID-19 safety reports for patients receiving Biogen MS therapies were consistent with the Explorys database and MS literature, illustrating the replicability and power of this approach

    The antibody aducanumab reduces Aβ plaques in Alzheimer's disease

    Full text link
    Alzheimer's disease (AD) is characterized by deposition of amyloid-β (Aβ) plaques and neurofibrillary tangles in the brain, accompanied by synaptic dysfunction and neurodegeneration. Antibody-based immunotherapy against Aβ to trigger its clearance or mitigate its neurotoxicity has so far been unsuccessful. Here we report the generation of aducanumab, a human monoclonal antibody that selectively targets aggregated Aβ. In a transgenic mouse model of AD, aducanumab is shown to enter the brain, bind parenchymal Aβ, and reduce soluble and insoluble Aβ in a dose-dependent manner. In patients with prodromal or mild AD, one year of monthly intravenous infusions of aducanumab reduces brain Aβ in a dose- and time-dependent manner. This is accompanied by a slowing of clinical decline measured by Clinical Dementia Rating-Sum of Boxes and Mini Mental State Examination scores. The main safety and tolerability findings are amyloid-related imaging abnormalities. These results justify further development of aducanumab for the treatment of AD. Should the slowing of clinical decline be confirmed in ongoing phase 3 clinical trials, it would provide compelling support for the amyloid hypothesis

    Natalizumab plus interferon beta-1a reduces lesion formation in relapsing multiple sclerosis

    No full text
    The SENTINEL study showed that the addition of natalizumab improved outcomes for patients with relapsing multiple sclerosis (MS)who had experienced disease activitywhile receiving interferon beta-1a (IFNβ-1a) alone. Previously unreported secondary and tertiary magnetic resonance imaging (MRI) measures are presented here. Patients received natalizumab 300 mg (n=589) or placebo (n=582) intravenously every 4 weeks plus IFNβ-1a 30 μg intramuscularly once weekly. Annual MRI scans allowed comparison of a range of MRI end points versus baseline. Over 2 years, 67% of patients receiving natalizumab plus IFNβ-1a remained free of newor enlarging T2- lesions compared with 30% of patients receiving IFNβ-1a alone. The mean change from baseline in T2 lesion volume over 2 years decreased in patients receiving natalizumab plus IFNβ-1a and increased in those receiving IFNβ-1a alone (–277.5 mm3 versus 525.6 mm3; pb0.001). Compared with IFNβ-1a alone, add-on natalizumab therapy resulted in a smaller increase in mean T1-hypointense lesion volume after 2 years (1821.3 mm3 versus 2210.5mm3; pb0.001), a smaller mean number of new T1-hypointense lesions over 2 years (2.3 versus 4.1; pb0.001), and a slower rate of brain atrophy during the second year of therapy (–0.31% versus –0.40%; p=0.020). Natalizumab add-on therapy reduced gadolinium-enhancing, T1-hypointense, and T2 MRI lesion activity and slowed brain atrophy progression in patients with relapsing MS who experienced disease activity despite treatment with IFNβ-1a alon

    Natalizumab plus interferon beta-1a for relapsing multiple sclerosis.

    No full text
    Item does not contain fulltextBACKGROUND: Interferon beta is used to modify the course of relapsing multiple sclerosis. Despite interferon beta therapy, many patients have relapses. Natalizumab, an alpha4 integrin antagonist, appeared to be safe and effective alone and when added to interferon beta-1a in preliminary studies. METHODS: We randomly assigned 1171 patients who, despite interferon beta-1a therapy, had had at least one relapse during the 12-month period before randomization to receive continued interferon beta-1a in combination with 300 mg of natalizumab (589 patients) or placebo (582 patients) intravenously every 4 weeks for up to 116 weeks. The primary end points were the rate of clinical relapse at 1 year and the cumulative probability of disability progression sustained for 12 weeks, as measured by the Expanded Disability Status Scale, at 2 years. RESULTS: Combination therapy resulted in a 24 percent reduction in the relative risk of sustained disability progression (hazard ratio, 0.76; 95 percent confidence interval, 0.61 to 0.96; P=0.02). Kaplan-Meier estimates of the cumulative probability of progression at two years were 23 percent with combination therapy and 29 percent with interferon beta-1a alone. Combination therapy was associated with a lower annualized rate of relapse over a two-year period than was interferon beta-1a alone (0.34 vs. 0.75, P<0.001) and with fewer new or enlarging lesions on T(2)-weighted magnetic resonance imaging (0.9 vs. 5.4, P<0.001). Adverse events associated with combination therapy were anxiety, pharyngitis, sinus congestion, and peripheral edema. Two cases of progressive multifocal leukoencephalopathy, one of which was fatal, were diagnosed in natalizumab-treated patients. CONCLUSIONS: Natalizumab added to interferon beta-1a was significantly more effective than interferon beta-1a alone in patients with relapsing multiple sclerosis. Additional research is needed to elucidate the benefits and risks of this combination treatment. (ClinicalTrials.gov number, NCT00030966.)
    corecore