21 research outputs found

    A Multi-Compartment, Single and Multiple Dose Pharmacokinetic Study of the Vaginal Candidate Microbicide 1% Tenofovir Gel

    Get PDF
    Background: Tenofovir (TFV) gel is being evaluated as a microbicide with pericoital and daily regimens. To inhibit viral replication locally, an adequate concentration in the genital tract is critical. Methods and Findings: Forty-nine participants entered a two-phase study: single-dose (SD) and multi-dose (MD), were randomized to collection of genital tract samples (endocervical cells [ECC], cervicovaginal aspirate and vaginal biopsies) at one of seven time points [0.5, 1, 2, 4, 6, 8, or 24 hr(s)] post-dose following SD exposure of 4 mL 1% TFV gel and received a single dose. Forty-seven were randomized to once (QD) or twice daily (BID) dosing for 2 weeks and to collection of genital tract samples at 4, 8 or 24 hrs after the final dose, but two discontinued prior to gel application. Blood was collected during both phases at the seven times post-dose. TFV exposure was low in blood plasma for SD and MD; median C max was 4.0 and 3.4 ng/mL, respectively (C≤29 ng/mL). TFV concentrations were high in aspirates and tissue after SD and MD, ranging from 1.2×10 4 to 9.9×10 6 ng/mL and 2.1×10 2 to 1.4×10 6 ng/mL, respectively, and did not noticeably differ between proximal and distal tissue. TFV diphosphate (TFV-DP), the intracellular active metabolite, was high in ECC, ranging from 7.1×10 3 to 8.8×10 6 ng/mL. TFV-DP was detectable in approximately 40% of the tissue samples, ranging from 1.8×10 2 to 3.5×10 4 ng/mL. AUC for tissue TFV-DP was two logs higher after MD compared to SD, with no noticeable differences when comparing QD and BID. Conclusions: Single-dose and multiple-dose TFV gel exposure resulted in high genital tract concentrations for at least 24 hours post-dose with minimal systemic absorption. These results support further study of TFV gel for HIV prevention. Trial registration: ClinicalTrials.gov NCT00561496. © 2011 Schwartz et al

    Participant characteristics associated with withdrawal from a large randomized trial of spermicide effectiveness

    Get PDF
    BACKGROUND: In most recent large efficacy trials of barrier contraceptive methods, a high proportion of participants withdrew before the intended end of follow-up. The objective of this analysis was to explore characteristics of participants who failed to complete seven months of planned participation in a trial of spermicide efficacy. METHODS: Trial participants were expected to use the assigned spermicide for contraception for 7 months or until pregnancy occurred. In bivariable and multivariable analyses, we assessed the associations between failure to complete the trial and 17 pre-specified baseline characteristics. In addition, among women who participated for at least 6 weeks, we evaluated the relationships between failure to complete, various features of their first 6 weeks of experience with the spermicide, and characteristics of the study centers and population. RESULTS: Of the 1514 participants in this analysis, 635 (42%) failed to complete the study for reasons other than pregnancy. Women were significantly less likely to complete if they were younger or unmarried, had intercourse at least 8 times per month, or were enrolled at a university center or at a center that enrolled fewer than 4 participants per month. Noncompliance with study procedures in the first 6 weeks was also associated with subsequent early withdrawal, but dissatisfaction with the spermicide was not. However, many participants without these risk factors withdrew early. CONCLUSIONS: Failure to complete is a major problem in barrier method trials that seriously compromises the interpretation of results. Targeting retention efforts at women at high risk for early withdrawal is not likely to address the problem sufficiently

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    corecore