62 research outputs found
Landscape science: a Russian geographical tradition
The Russian geographical tradition of landscape science (landshaftovedenie) is analyzed with particular reference to its initiator, Lev Semenovich Berg (1876-1950). The differences between prevailing Russian and Western concepts of landscape in geography are discussed, and their common origins in German geographical thought in the late nineteenth and early twentieth centuries are delineated. It is argued that the principal differences are accounted for by a number of factors, of which Russia's own distinctive tradition in environmental science deriving from the work of V. V. Dokuchaev (1846-1903), the activities of certain key individuals (such as Berg and C. O. Sauer), and the very different social and political circumstances in different parts of the world appear to be the most significant. At the same time it is noted that neither in Russia nor in the West have geographers succeeded in specifying an agreed and unproblematic understanding of landscape, or more broadly in promoting a common geographical conception of human-environment relationships. In light of such uncertainties, the latter part of the article argues for closer international links between the variant landscape traditions in geography as an important contribution to the quest for sustainability
Itinerant Electron Ferromagnetism in the Quantum Hall Regime
We report on a study of the temperature and Zeeman-coupling-strength
dependence of the one-particle Green's function of a two-dimensional (2D)
electron gas at Landau level filling factor where the ground state is
a strong ferromagnet. Our work places emphasis on the role played by the
itinerancy of the electrons, which carry the spin magnetization and on
analogies between this system and conventional itinerant electron ferromagnets.
We discuss the application to this system of the self-consistent Hartree-Fock
approximation, which is analogous to the band theory description of metallic
ferromagnetism and fails badly at finite temperatures because it does not
account for spin-wave excitations. We go beyond this level by evaluating the
one-particle Green's function using a self-energy, which accounts for
quasiparticle spin-wave interactions. We report results for the temperature
dependence of the spin magnetization, the nuclear spin relaxation rate, and
2D-2D tunneling conductances. Our calculations predict a sharp peak in the
tunneling conductance at large bias voltages with strength proportional to
temperature. We compare with experiment, where available, and with predictions
based on numerical exact diagonalization and other theoretical approaches.Comment: 29 pages, 20 figure
Screening for Gonorrhea: Recommendation Statement
The U.S. Preventive Services Task Force (USPSTF) recommends that clinicians screen all sexually active women, including those who are pregnant, for gonorrhea infection if they are at increased risk for infection (that is, if they are young or have other individual or population risk factors; see Clinical Considerations for further discussion of risk factors). B recommendation
Psychosocial risk factors for suicidality in children and adolescents
Suicidality in childhood and adolescence is of increasing concern. The aim of this paper was to review the published literature identifying key psychosocial risk factors for suicidality in the paediatric population. A systematic two-step search was carried out following the PRISMA statement guidelines, using the terms ‘suicidality, suicide, and self-harm’ combined with terms ‘infant, child, adolescent’ according to the US National Library of Medicine and the National Institutes of Health classification of ages. Forty-four studies were included in the qualitative synthesis. The review identified three main factors that appear to increase the risk of suicidality: psychological factors (depression, anxiety, previous suicide attempt, drug and alcohol use, and other comorbid psychiatric disorders); stressful life events (family problems and peer conflicts); and personality traits (such as neuroticism and impulsivity). The evidence highlights the complexity of suicidality and points towards an interaction of factors contributing to suicidal behaviour. More information is needed to understand the complex relationship between risk factors for suicidality. Prospective studies with adequate sample sizes are needed to investigate these multiple variables of risk concurrently and over time
Practical recipes for the model order reduction, dynamical simulation, and compressive sampling of large-scale open quantum systems
This article presents numerical recipes for simulating high-temperature and
non-equilibrium quantum spin systems that are continuously measured and
controlled. The notion of a spin system is broadly conceived, in order to
encompass macroscopic test masses as the limiting case of large-j spins. The
simulation technique has three stages: first the deliberate introduction of
noise into the simulation, then the conversion of that noise into an equivalent
continuous measurement and control process, and finally, projection of the
trajectory onto a state-space manifold having reduced dimensionality and
possessing a Kahler potential of multi-linear form. The resulting simulation
formalism is used to construct a positive P-representation for the thermal
density matrix. Single-spin detection by magnetic resonance force microscopy
(MRFM) is simulated, and the data statistics are shown to be those of a random
telegraph signal with additive white noise. Larger-scale spin-dust models are
simulated, having no spatial symmetry and no spatial ordering; the
high-fidelity projection of numerically computed quantum trajectories onto
low-dimensionality Kahler state-space manifolds is demonstrated. The
reconstruction of quantum trajectories from sparse random projections is
demonstrated, the onset of Donoho-Stodden breakdown at the Candes-Tao sparsity
limit is observed, a deterministic construction for sampling matrices is given,
and methods for quantum state optimization by Dantzig selection are given.Comment: 104 pages, 13 figures, 2 table
Genome-wide association analyses identify new Brugada syndrome risk loci and highlight a new mechanism of sodium channel regulation in disease susceptibility.
Brugada syndrome (BrS) is a cardiac arrhythmia disorder associated with sudden death in young adults. With the exception of SCN5A, encoding the cardiac sodium channel Na1.5, susceptibility genes remain largely unknown. Here we performed a genome-wide association meta-analysis comprising 2,820 unrelated cases with BrS and 10,001 controls, and identified 21 association signals at 12 loci (10 new). Single nucleotide polymorphism (SNP)-heritability estimates indicate a strong polygenic influence. Polygenic risk score analyses based on the 21 susceptibility variants demonstrate varying cumulative contribution of common risk alleles among different patient subgroups, as well as genetic associations with cardiac electrical traits and disorders in the general population. The predominance of cardiac transcription factor loci indicates that transcriptional regulation is a key feature of BrS pathogenesis. Furthermore, functional studies conducted on MAPRE2, encoding the microtubule plus-end binding protein EB2, point to microtubule-related trafficking effects on Na1.5 expression as a new underlying molecular mechanism. Taken together, these findings broaden our understanding of the genetic architecture of BrS and provide new insights into its molecular underpinnings
Multiplatform Analysis of 12 Cancer Types Reveals Molecular Classification within and across Tissues of Origin
Recent genomic analyses of pathologically-defined tumor types identify “within-a-tissue” disease subtypes. However, the extent to which genomic signatures are shared across tissues is still unclear. We performed an integrative analysis using five genome-wide platforms and one proteomic platform on 3,527 specimens from 12 cancer types, revealing a unified classification into 11 major subtypes. Five subtypes were nearly identical to their tissue-of-origin counterparts, but several distinct cancer types were found to converge into common subtypes. Lung squamous, head & neck, and a subset of bladder cancers coalesced into one subtype typified by TP53 alterations, TP63 amplifications, and high expression of immune and proliferation pathway genes. Of note, bladder cancers split into three pan-cancer subtypes. The multi-platform classification, while correlated with tissue-of-origin, provides independent information for predicting clinical outcomes. All datasets are available for data-mining from a unified resource to support further biological discoveries and insights into novel therapeutic strategies
- …