24 research outputs found

    Multicriteria cruise control design considering geographic and traffic conditions

    Get PDF
    The paper presents the design of cruise control systems considering road and traffic information during the design of speed trajectories. Several factors are considered such as road inclinations, traffic lights, preceding vehicles, speed limits, engine emissions and travel times. The purpose of speed design is to reduce longitudinal energy, fuel consumption and engine emissions without a significant increase in travel time. The signals obtained from the road and traffic are handled jointly with the dynamic equations of the vehicle and built into the control design of reference speed. A robust H∞ control is designed to achieve the speed of the cruise control, guaranteeing the robustness of the system against disturbances and uncertainties

    Freeway shockwave control using ramp metering and variable speed limits

    Get PDF

    A simple dynamic model for the dispersion of motorway traffic emission

    Get PDF

    Network traffic flow optimization under performance constraints

    Get PDF
    In this paper, a model-based perimeter control policy for large-scale urban vehicular networks is proposed. Assuming a homogeneously loaded vehicle network and the existence of a well-posed Network Fundamental Diagram (NFD), we describe a protected network throughout its aggregated dynamics including nonlinear exit flow characteristics. Within this framework of constrained optimal boundary flow gating, two main performance metrics are considered: (a) first, connected to the NFD, the concept of average network travel time and delay as a performance metric is defined; (b) second, at boundaries, we take into account additional external network queue dynamics governed by uncontrolled inflow demands. External queue capacities in terms of finite-link lengths are used as the second performance metric. Hence, the corresponding performance requirement is an upper bound of external queues. While external queues represent vehicles waiting to enter the protected network, internal queue describes the protected network’s aggregated behavior. By controlling the number of vehicles joining the internal queue from the external ones, herewith a network traffic flow maximization solution subject to the internal and external dynamics and their performance constraints is developed. The originally non-convex optimization problem is transformed to a numerically efficiently convex one by relaxing the performance constraints into time-dependent state boundaries. The control solution can be interpreted as a mechanism which transforms the unknown arrival process governing the number of vehicles entering the network to a regulated process, such that prescribed performance requirements on travel time in the network and upper bound on the external queue are satisfied. Comparative numerical simulation studies on a microscopic traffic simulator are carried out to show the benefits of the proposed method

    Macroscopic modeling and control of emission in urban road traffic networks

    Get PDF
    This work suggests a framework for modeling the traffic emissions in urban road traffic networks that are described by the Network Fundamental Diagram (NFD) concept. Traffic emission is formalized in finite spatiotemporal windows as a function of aggregated traffic variables, i.e. Total Travel Distances (TTDs) in the network and network average speed. The framework is extended for the size of an urban network during a signal cycle – the size of a window in which the network aggregated parameters are modeled in the NFD concept. Simulations have been carried out for model accuracy analysis, using the microscopic Versit+Micro model as reference. By applying the macroscopic emission model function and the traffic modeling relationships, the control objective for pollution reduction has also been formalized. Basically, multi-criteria control design has been introduced for two criteria: maximization of the TTD and minimization of traffic emissions within the network

    Pattern Recognition Based Speed Forecasting Methodology for Urban Traffic Network

    Get PDF
    A full methodology of short-term traffic prediction is proposed for urban road traffic network via Artificial Neural Network (ANN). The goal of the forecasting is to provide speed estimation forward by 5, 15 and 30 min. Unlike similar research results in this field, the investigated method aims to predict traffic speed for signalized urban road links and not for highway or arterial roads. The methodology contains an efficient feature selection algorithm in order to determine the appropriate input parameters required for neural network training. As another contribution of the paper, a built-in incomplete data handling is provided as input data (originating from traffic sensors or Floating Car Data (FCD)) might be absent or biased in practice. Therefore, input data handling can assure a robust operation of speed forecasting also in case of missing data. The proposed algorithm is trained, tested and analysed in a test network built-up in a microscopic traffic simulator by using daily course of real-world traffic

    Real-time Modeling and Control Objective Analysis of Motorway Emissions

    No full text
    AbstractIn this paper a real-time macroscopic modeling framework of road traffic emissions is suggested based on an average-speed emission model. A model function is created to describe the spatiotemporal distribution of motorway traffic emissions using loop detector data only which is suitable for emission dispersion and immission modeling. The proposed model is built using macroscopic traffic variables, and derivation is shown both on microscopic and macroscopic levels, in the latter case showing relationship with traffic performance functions as well. The suggested model function is validated in a VISSIM/MatLab simulation environment, applying COPERT IV average speed model in the proposed framework, compared to a microscopic emission model (Versit+Micro is used via the VISSIM add-on called EnViVer). Based on the suggested model, control objectives are stated for a multi-criteria model-based control. During the cost function analysis, pollutants are distinguished in terms of the areal extension of their effects and a diverse modeling approach is carried out for pollutants causing global and local effects. The cost function is analyzed for steady-state flow conditions
    corecore