9 research outputs found

    West Nile virus in blood: Stability, distribution, and susceptibility to PEN110 inactivation

    No full text
    BACKGROUND: The outbreak of West Nile virus (WNV) is the most recent reminder that the blood supply continues to be vulnerable to emerging and reemerging pathogens. A potentially prospective approach to reducing the risk of transfusion-transmitted infections of a known or newly emerging microbe is implementation of a broad-spectrum pathogen reduction technology. The purpose of this study was to evaluate the susceptibility of WNV to PEN110 inactivation in RBCs and to characterize the WNV interaction with blood, including the stability of WNV in RBCs stored at 1 to 6°C, its distribution and infectivity, and its ability to infect WBCs. STUDY DESIGN AND METHODS: Inactivation was performed with three WNV isolates spiked into WBC-reduced RBCs. The stability of the virus was evaluated by spiking two viral loads into RBCs followed by storing at 1 to 6°C for up to 42 days. The distribution of the virus in plasma, RBCs, and PBMCs was evaluated with whole blood from infected hamsters. Finally, in vitro propagation of WNV was evaluated with the THP-1 cell line and primary monocytes. RESULTS: The kinetics of PEN110 inactivation of WNV isolates RI-44, NJ-176, and 99-3494031 were fast and complete within 24 hours with reduction factors of 5 to 7 log plaque-forming units per mL. WNV remained infectious for up to 42 days at 1 to 6°C. The WNV titers in whole blood, plasma, RBCs, and PBMC fractions were equally distributed and ranged from 2 to 3 log tissue culture infectious dose 50 percent per mL. Productive infection of stimulated monocytes and THP-1 cells was also demonstrated. CONCLUSIONS: These studies demonstrated that PEN110 efficiently inactivated WNV in RBCs and whole blood from infected hamsters to the limit of detection. WNV survived in RBCs stored at 1 to 6°C with a gradual loss of titer but infectivity could still be observed for up to 42 days. In addition, it was observed that WNV was equally distributed in all blood fractions including PBMCs and it was possible to establish productive infection of a human monocytic cell line and stimulated human monocytes

    Inactivation of protozoan parasites in red blood cells using INACTINE PEN110 chemistry

    No full text
    BACKGROUND: The transmission of parasites, including Babesia, plasmodia, and Trypanosoma cruzi, via transfusions is an important public health concern. INACTINE technology is a pathogen-reduction process that utilizes PEN110, an electrophilic agent that inactivates a wide range of pathogens by disrupting nucleic acid replication. The present study investigated the effect of PEN110 treatment on the viability of protozoa in RBCs. STUDY DESIGN AND METHODS: B.microti-parasitized RBCs from infected hamsters were treated with PEN110 and inoculated to naïve animals. Parasitemia was detected by blood smears and PCR. Human RBCs infected with P. falciparum were treated with PEN110 and incubated with fresh RBCs. P. falciparum multiplication was detected by blood smears. Human RBCs spiked with T. cruzi and treated with PEN110 were analyzed for the presence of live parasites using in-vitro infectivity assay or by inoculating susceptible mice. RESULTS: Treatment of RBCs infected with B. microti or P. falciparum with 0.01 to 0.1 percent (vol/vol) PEN110 resulted in parasite inactivation to below the limit of detection during 24 hours. T. cruzi inoculated into human RBCs was inactivated below the limit of detection by 0.1 percent PEN110 after 3 hours. CONCLUSION: The study demonstrates that treatment of blood with PEN110 is highly effective in eradicating transfusion-transmitted protozoan parasites
    corecore