196 research outputs found

    On spectrum of ILW hierarchy in conformal field theory II: coset CFT's

    Full text link
    We study integrable structure of the coset conformal field theory and define the system of Integrals of Motion which depends on external parameters. This system can be viewed as a quantization of the ILW type hierarchy. We propose a set of Bethe anzatz equations for its spectrum.Comment: 11 page

    Wannier functions analysis of the nonlinear Schr\"{o}dinger equation with a periodic potential

    Full text link
    In the present Letter we use the Wannier function basis to construct lattice approximations of the nonlinear Schr\"{o}dinger equation with a periodic potential. We show that the nonlinear Schr\"{o}dinger equation with a periodic potential is equivalent to a vector lattice with long-range interactions. For the case-example of the cosine potential we study the validity of the so-called tight-binding approximation i.e., the approximation when nearest neighbor interactions are dominant. The results are relevant to Bose-Einstein condensate theory as well as to other physical systems like, for example, electromagnetic wave propagation in nonlinear photonic crystals.Comment: 5 pages, 1 figure, submitted to Phys. Rev.

    Regular spatial structures in arrays of Bose-Einstein condensates induced by modulational instability

    Full text link
    We show that the phenomenon of modulational instability in arrays of Bose-Einstein condensates confined to optical lattices gives rise to coherent spatial structures of localized excitations. These excitations represent thin disks in 1D, narrow tubes in 2D, and small hollows in 3D arrays, filled in with condensed atoms of much greater density compared to surrounding array sites. Aspects of the developed pattern depend on the initial distribution function of the condensate over the optical lattice, corresponding to particular points of the Brillouin zone. The long-time behavior of the spatial structures emerging due to modulational instability is characterized by the periodic recurrence to the initial low-density state in a finite optical lattice. We propose a simple way to retain the localized spatial structures with high atomic concentration, which may be of interest for applications. Theoretical model, based on the multiple scale expansion, describes the basic features of the phenomenon. Results of numerical simulations confirm the analytical predictions.Comment: 17 pages, 13 figure

    Quark--anti-quark potential in N=4 SYM

    Get PDF
    We construct a closed system of equations describing the quark--anti-quark potential at any coupling in planar N=4 supersymmetric Yang-Mills theory. It is based on the Quantum Spectral Curve method supplemented with a novel type of asymptotics. We present a high precision numerical solution reproducing the classical and one-loop string predictions very accurately. We also analytically compute the first 7 nontrivial orders of the weak coupling expansion. Moreover, we study analytically the generalized quark--anti-quark potential in the limit of large imaginary twist to all orders in perturbation theory. We demonstrate how the QSC reduces in this case to a one-dimensional Schrodinger equation. In the process we establish a link between the Q-functions and the solution of the Bethe-Salpeter equation.Comment: 31 pages, 1 figure; v2: minor correcton

    Parafermionic Liouville field theory and instantons on ALE spaces

    Full text link
    In this paper we study the correspondence between the su^(n)ksu^(n)p/su^(n)k+p\hat{\textrm{su}}(n)_{k}\oplus \hat{\textrm{su}}(n)_{p}/\hat{\textrm{su}}(n)_{k+p} coset conformal field theories and N=2\mathcal{N}=2 SU(n) gauge theories on R4/Zp\mathbb{R}^{4}/\mathbb{Z}_{p}. Namely we check the correspondence between the SU(2) Nekrasov partition function on R4/Z4\mathbb{R}^{4}/\mathbb{Z}_{4} and the conformal blocks of the S3S_{3} parafermion algebra (in SS and DD modules). We find that they are equal up to the U(1)-factor as it was in all cases of AGT-like relations. Studying the structure of the instanton partition function on R4/Zp\mathbb{R}^4/\mathbb{Z}_p we also find some evidence that this correspondence with arbitrary pp takes place up to the U(1)-factor.Comment: 21 pages, 6 figures, misprints corrected, references added, version to appear in JHE

    Modulational and Parametric Instabilities of the Discrete Nonlinear Schr\"odinger Equation

    Get PDF
    We examine the modulational and parametric instabilities arising in a non-autonomous, discrete nonlinear Schr{\"o}dinger equation setting. The principal motivation for our study stems from the dynamics of Bose-Einstein condensates trapped in a deep optical lattice. We find that under periodic variations of the heights of the interwell barriers (or equivalently of the scattering length), additionally to the modulational instability, a window of parametric instability becomes available to the system. We explore this instability through multiple-scale analysis and identify it numerically. Its principal dynamical characteristic is that, typically, it develops over much larger times than the modulational instability, a feature that is qualitatively justified by comparison of the corresponding instability growth rates

    Vortices in Bose-Einstein Condensates: Some Recent Developments

    Full text link
    In this brief review we summarize a number of recent developments in the study of vortices in Bose-Einstein condensates, a topic of considerable theoretical and experimental interest in the past few years. We examine the generation of vortices by means of phase imprinting, as well as via dynamical instabilities. Their stability is subsequently examined in the presence of purely magnetic trapping, and in the combined presence of magnetic and optical trapping. We then study pairs of vortices and their interactions, illustrating a reduced description in terms of ordinary differential equations for the vortex centers. In the realm of two vortices we also consider the existence of stable dipole clusters for two-component condensates. Last but not least, we discuss mesoscopic patterns formed by vortices, the so-called vortex lattices and analyze some of their intriguing dynamical features. A number of interesting future directions are highlighted.Comment: 24 pages, 8 figs, ws-mplb.cls, to appear in Modern Physics Letters B (2005

    Dark solitons in atomic Bose-Einstein condensates: from theory to experiments

    Full text link
    This review paper presents an overview of the theoretical and experimental progress on the study of matter-wave dark solitons in atomic Bose-Einstein condensates. Upon introducing the general framework, we discuss the statics and dynamics of single and multiple matter-wave dark solitons in the quasi one-dimensional setting, in higher-dimensional settings, as well as in the dimensionality crossover regime. Special attention is paid to the connection between theoretical results, obtained by various analytical approaches, and relevant experimental observations.Comment: 82 pages, 13 figures. To appear in J. Phys. A: Math. Theor

    Instanton moduli spaces and bases in coset conformal field theory

    Full text link
    Recently proposed relation between conformal field theories in two dimensions and supersymmetric gauge theories in four dimensions predicts the existence of the distinguished basis in the space of local fields in CFT. This basis has a number of remarkable properties, one of them is the complete factorization of the coefficients of the operator product expansion. We consider a particular case of the U(r) gauge theory on C^2/Z_p which corresponds to a certain coset conformal field theory and describe the properties of this basis. We argue that in the case p=2, r=2 there exist different bases. We give an explicit construction of one of them. For another basis we propose the formula for matrix elements.Comment: 31 pages, 3 figure
    corecore