4,266 research outputs found

    Environmental effects on galaxy evolution. II: quantifying the tidal features in NIR-images of the cluster Abell 85

    Full text link
    This work is part of a series of papers devoted to investigate the evolution of cluster galaxies during their infall. In the present article we imaged in NIR a selected sample of galaxies through- out the massive cluster Abell 85 (z = 0.055). We obtained (JHK) photometry for 68 objects, reaching 1 mag/arcsec^2 deeper than 2MASS. We use these images to unveil asymmetries in the outskirts of a sample of bright galaxies and develop a new asymmetry index, alpha_An, which allows to quantify the degree of disruption by the relative area occupied by the tidal features on the plane of the sky. We measure the asymmetries for a subsample of 41 large area objects finding clear asymmetries in ten galaxies, most of them being in groups and pairs projected at different clustercentric distances, some of them located beyond R500 . Combining information on the Hi-gas content of blue galaxies and the distribution of sub-structures across Abell 85, with the present NIR asymmetry analysis, we obtain a very powerful tool to confirm that tidal mechanisms are indeed present and are currently affecting a fraction of galaxies in Abell 85. However, when comparing our deep NIR images with UV-blue images of two very disrupted (jellyfish) galaxies in this cluster, we discard the presence of tidal 1 interactions down to our detection limit. Our results suggest that ram-pressure stripping is at the origin of such spectacular disruptions. We conclude that across a complex cluster like Abell 85, environment mechanisms, both gravitational and hydrodynamical, are playing an active role in driving galaxy evolution.Comment: 30 pages, 13 figures, Accepted for Publication in A

    Field-enlarging transformations and chiral theories

    Full text link
    A field-enlarging transformation in the chiral electrodynamics is performed. This introduces an additional gauge symmetry to the model that is unitary and anomaly-free and allows for comparison of different models discussed in the literature. The problem of superfluous degrees of freedom and their influence on quantization is discussed. Several "mysteries" are explained from this point of view.Comment: 14 pages, LaTeX-file, BI-TP 93/0

    Discounting in LTL

    Full text link
    In recent years, there is growing need and interest in formalizing and reasoning about the quality of software and hardware systems. As opposed to traditional verification, where one handles the question of whether a system satisfies, or not, a given specification, reasoning about quality addresses the question of \emph{how well} the system satisfies the specification. One direction in this effort is to refine the "eventually" operators of temporal logic to {\em discounting operators}: the satisfaction value of a specification is a value in [0,1][0,1], where the longer it takes to fulfill eventuality requirements, the smaller the satisfaction value is. In this paper we introduce an augmentation by discounting of Linear Temporal Logic (LTL), and study it, as well as its combination with propositional quality operators. We show that one can augment LTL with an arbitrary set of discounting functions, while preserving the decidability of the model-checking problem. Further augmenting the logic with unary propositional quality operators preserves decidability, whereas adding an average-operator makes some problems undecidable. We also discuss the complexity of the problem, as well as various extensions

    Phenomenological description of quantum gravity inspired modified classical electrodynamics

    Get PDF
    We discuss a large class of phenomenological models incorporating quantum gravity motivated corrections to electrodynamics. The framework is that of electrodynamics in a birefringent and dispersive medium with non-local constitutive relations, which are considered up to second order in the inverse of the energy characterizing the quantum gravity scale. The energy-momentum tensor, Green functions and frequency dependent refraction indices are obtained, leading to departures from standard physics. The effective character of the theory is also emphasized by introducing a frequency cutoff. The analysis of its effects upon the standard notion of causality is performed, showing that in the radiation regime the expected corrections get further suppressed by highly oscillating terms, thus forbiding causality violations to show up in the corresponding observational effects.Comment: 14 pages, to be published in Obregon Festschrift 2006, Gen. Rel. and Gra

    Generalized Penner models to all genera

    Full text link
    We give a complete description of the genus expansion of the one-cut solution to the generalized Penner model. The solution is presented in a form which allows us in a very straightforward manner to localize critical points and to investigate the scaling behaviour of the model in the vicinity of these points. We carry out an analysis of the critical behaviour to all genera addressing all types of multi-critical points. In certain regions of the coupling constant space the model must be defined via analytical continuation. We show in detail how this works for the Penner model. Using analytical continuation it is possible to reach the fermionic 1-matrix model. We show that the critical points of the fermionic 1-matrix model can be indexed by an integer, mm, as it was the case for the ordinary hermitian 1-matrix model. Furthermore the mm'th multi-critical fermionic model has to all genera the same value of γstr\gamma_{str} as the mm'th multi-critical hermitian model. However, the coefficients of the topological expansion need not be the same in the two cases. We show explicitly how it is possible with a fermionic matrix model to reach a m=2m=2 multi-critical point for which the topological expansion has alternating signs, but otherwise coincides with the usual Painlev\'{e} expansion.Comment: 27 pages, PostScrip

    Base Case Analysis of a HYSOL Power Plant

    Get PDF
    Concentrating solar power (CSP) plants are regarded as an alternative solution for electricity generation. The main drawback of this technology is related to the intermittent and seasonal nature of the solar irradiation. As a consequence, most CSP plants have a reduced capacity factor and difficulties to supply electricity on demand to the grid. The integration of energy back-up systems may contribute to increasing power generation capacity and stability. Several options are being developed at present which are based on the incorporation of Thermal Energy Storage (TES) and also the use of auxiliary fuels. HYSOL is a new concept in CSP technology that relies on the integration of a molten salt TES system operating in hybrid mode with a biogas turbine with a Heat Recovery System (HRS). This paper illustrates the methodology and first results obtained during the development of the static model, considering a Base Case of HYSOL configuration. The study of this Base Case allows evaluating the impact of HYSOL technology, providing preliminary plant information and defining the required tools to be used in the project

    In-plane/out-of-plane separated representations of updated Lagrangian descriptions of viscoplastic flow models in plate domains

    Get PDF
    A new efficient updated Lagrangian strategy for numerical simulations of material forming processes is presented. The basic ingredient is the tensorial decomposition of the velocity field into a finite sum of in-plane and an out-of-plane components, giving rise to an equivalent computational complexity of some two-dimensional problems and some one-dimensional ones (therefore, much less than the true three-dimensional complexity of the original problem). This is efficiently achieved by using Proper Generalized Decomposition (PGD) techniques, which are here employed in an updated Lagrangian framework for the very first time. This updated Lagrangian nature of the method needs the use of a robust numerical integration technique (in this case, the Stabilized Conforming Nodal Integration has been chosen) for addressing the highly distorted projected meshes. The resulting strategy is of general purpose, although it is especially well suited for addressing models defined in plate or shell (in general, parallelepipedic) domains. The basics of the just-developed method are shown, together with some numerical examples to show the potential of the technique

    A Finite Quantum Gravity Field Theory Model

    Full text link
    We discuss the quantization of Delta gravity, a two symmetric tensors model of gravity. This model, in Cosmology, shows accelerated expansion without a cosmological constant. We present the δ~\tilde{\delta} transformation which defines the geometry of the model. Then we show that all delta type models live at one loop only. We apply this to General Relativity and we calculate the one loop divergent part of the Effective Action showing its null contribution in vacuum, implying a finite model. Then we proceed to study the existence of ghosts in the model. Finally, we study the form of the finite quantum corrections to the classical action of the model.Comment: Latex, 33 page

    Lazy Abstraction-Based Controller Synthesis

    Full text link
    We present lazy abstraction-based controller synthesis (ABCS) for continuous-time nonlinear dynamical systems against reach-avoid and safety specifications. State-of-the-art multi-layered ABCS pre-computes multiple finite-state abstractions of varying granularity and applies reactive synthesis to the coarsest abstraction whenever feasible, but adaptively considers finer abstractions when necessary. Lazy ABCS improves this technique by constructing abstractions on demand. Our insight is that the abstract transition relation only needs to be locally computed for a small set of frontier states at the precision currently required by the synthesis algorithm. We show that lazy ABCS can significantly outperform previous multi-layered ABCS algorithms: on standard benchmarks, lazy ABCS is more than 4 times faster
    corecore