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A new efficient updated Lagrangian strategy for numerical simulations of material forming 
processes is presented. The basic ingredient is the tensorial decomposition of the velocity 
field into a finite sum of in-plane and an out-of-plane components, giving rise to an 
equivalent computational complexity of some two-dimensional problems and some one-
dimensional ones (therefore, much less than the true three-dimensional complexity of the 
original problem). This is efficiently achieved by using Proper Generalized Decomposition 
(PGD) techniques, which are here employed in an updated Lagrangian framework for 
the very first time. This updated Lagrangian nature of the method needs the use of 
a robust numerical integration technique (in this case, the Stabilized Conforming Nodal 
Integration has been chosen) for addressing the highly distorted projected meshes. The 
resulting strategy is of general purpose, although it is especially well suited for addressing 
models defined in plate or shell (in general, parallelepipedic) domains. The basics of the 
just-developed method are shown, together with some numerical examples to show the 
potential of the technique.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The numerical simulation of material-forming processes is a fundamental tool in the industry. It allows reducing the 
design cycle time and optimizing the process with no need for costly and time-consuming test campaigns [1]. However, 
it continues to be a very challenging task, despite the high-performance computation hardware and software available 
nowadays. In addition, the simulation of processes defined in plate-like domains, possibly of very small thickness, such as 
co-extrusion or friction stir welding (FSW), involves some additional difficulties:

• the multiphysic nature of the problem. This leads to thermomechanical coupled problems with non-trivial boundary 
conditions,

• the presence of large transformations and, therefore, very distorted meshes when considering a Lagrangian framework,
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• the simulation of voids and flaws,
• the presence of evolving free surfaces and fixed or moving interfaces,
• the need for the knowledge of the thermomechanical history of each material particle for evaluating properties depend-

ing on such thermomechanical history.

Moreover, modern industries demand a new paradigm in numerical simulation in order to improve their competitiveness. 
This new paradigm leads to the creation of virtual test platforms or to the online control of processes in real-time.

In general, three numerical simulation frameworks can be found in the literature. Choosing a particular one depends on 
the application and has a great influence on the former discussion about difficulties and new simulation challenges. Briefly, 
we can summarize the following frameworks.

• Eulerian. The discretization mesh is fixed. This means that the mesh does not evolve in time. In practice, with this 
approach, no mesh distortion occurs. This is, in principle, the easiest approach for simulating fluid-like materials with 
no free boundaries.
Unfortunately, the material derivative in a fixed reference frame will contain a convective term. This convective term, 
when it dominates the problem, leads to numerical instabilities, and the problem should be stabilized [2]. Additionally, 
the path and the thermomechanical history of the material particles should be reconstructed a posteriori, which involves 
numerical inaccuracies. Moreover, this reconstruction should be frequent since the physics of the problem depends on 
the material distribution [3]. Finally, the treatment of free surfaces and evolving boundary conditions is a tricky issue 
within the Eulerian framework.

• Lagrangian. The discretization nodes are attached to material particles. The mesh evolves in time when following the 
material motion, thus their thermomechanical history is obtained directly. Free surfaces are easily tracked and boundary 
conditions imposed in a simple way [4–7].
However, this approach leads to distorted meshes when large deformations occur, and therefore a frequent remeshing 
is needed. 3D-remeshing could be very expensive in practice, constituting for some applications the true bottleneck of 
the simulation. In addition, frequent projections of the fields between the old and new meshes are required, introducing 
numerical diffusion (unless some type of meshless formulation is employed, alleviating the remeshing needs, see [8]).

• Arbitrary Lagrangian–Eulerian (ALE). This framework was developed in order to avoid the main issues of the former 
approaches while preserving their main advantages. The discretization nodes are attached neither to the space nor 
to the material points. The mesh moves in a prescribed way to avoid any excessive distortion, alleviating remeshing 
procedures.
However, convective terms associated with the relative velocity between the mesh and the material remain in the for-
mulation, implying again numerical difficulties. ALE-based methods can be very expensive in computational terms, and 
the field projection between meshes is not completely avoided. Moreover, they require a certain amount of “know-
how”: the mesh velocity depends on the specific application and its determination is not a trivial task. In any case, 
computational codes based on ALE approaches are widely considered for the numerical simulation of material-forming 
processes [9,10].

The choice of one or another approach will depend on the specific application. The interested reader can find a deeper 
analysis of these frameworks in [11]. For some specific forming procedures, such as Friction Stir Welding, for instance, differ-
ent strategies may appear, which are better suited for different regions of the domain (Eulerian around the pin, Lagrangian 
faraway) [3] or simply updated Lagrangian [12] in the whole domain.

In many (if not all) material-forming simulations, because their inherent difficulties already mentioned, updated La-
grangian frameworks are very appealing. However, their computational cost remains sometimes too high, even for recent 
meshless strategies in the field [13]. Precisely, the main goal of this work is to explore new strategies to enhance updated 
Lagrangian simulations and to reduce substantially its computational cost. To that end, in Section 2 the main ingredients 
of the proposed technique are introduced, namely the space decomposition within the Proper Generalized Decomposition 
[14–17] and the use of efficient stabilized nodal conforming integration [18] to allow for minimal loss of accuracy despite 
mesh distortion [13,19]. In Section 3, the proposed strategy is validated, while in Section 4 the possibility of employing the 
proposed technique in more complex situations is studied.

2. Proposed strategy

The proposed strategy can be seen as a natural extension of the in-plane/out-of-plane tensorial decomposition based 
on the Proper Generalized Decomposition (PGD) to an updated Lagrangian framework. The idea of decomposing three-
dimensional fields (here, velocity) into a sequence of two-dimensional and one-dimensional fields (the so-called finite sum 
decomposition, see [17]), is at the heart of the Proper Generalized Decomposition, PGD, and was initially developed for an-
alyzing plates by B. Bognet et al. [20]. It has also been used in Eulerian frameworks to simulate solids and non-Newtonian 
fluids [21] with impressive savings of computational cost compared with traditional 3D FE methods.

The main idea of the approach developed here is to take advantage of updated Lagrangian methods, very convenient 
for material-forming simulations, in which the thermomechanical history is of major interest, but obtaining a significant 
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Fig. 1. General scheme of the proposed strategy.

reduction of its computational complexity using the in-plane/out-of-plane PGD-based decomposition. This will allow 3D 
solutions with a typical computational complexity characteristic of 2D simulations. The material particles’ position and all 
the variables attached to them are projected onto a plane and onto the thickness axis (step 1). Using these nodal projections, 
two functional spaces are constructed, 2D and 1D, respectively. The intensive variables are projected on these spaces using 
a PGD approximation, equivalent to a singular value decomposition (SVD) (step 2). Then, the thermomechanical problem 
is solved as a series of 2D and 1D problems in these spaces thanks to the in-plane/out-of-plane PGD-based formulation 
(step 3). Once the solution is obtained, the primary variables can be reconstructed for the material particles in the 3D 
domain (step 4) and their positions updated (step 5). This reconstruction does not involve any interpolation or projection 
stage, thus avoiding numerical diffusion and other numerical difficulties. These steps are repeated until the end of the 
simulation. In Fig. 1, a general scheme of the strategy with its different steps is shown. Note that both the mechanical and 
the thermal parts of the problem can be solved using the spatial decomposition regardless of the coupling scheme used.

The main ingredients of the proposed strategy are presented in detail below. In Section 2.1, the space decomposition 
in the updated Lagrangian framework is described. A general flow model for material-forming processes is presented, con-
sidering linear and non-linear behavior laws. In Section 2.2, stabilized conforming nodal integration (SCNI) techniques are 
briefly reviewed, which allow performing an accurate integration of the operators, even in very distorted meshes [18,19].

2.1. The in-plane/out-of-plane decomposition in an updated Lagrangian framework

Let us describe this updated Lagrangian strategy through a generic viscoplastic flow model [22] in a domain �.
The balance of momentum and mass equations without inertia and the assumed incompressibility of the flow read:

∇ · σ = 0, ∇ · v = 0 in � (1)

To calculate the temperature field, the viscoplastic flow model is coupled with the heat transfer equation:

∇ · (k∇T ) + ṙ − (ρcp Ṫ ) = 0 in � (2)

The rate of heat generation due to plastic deformation is obtained from

ṙ = βσ : d

where β is the fraction of mechanical energy transformed into heat and d the strain rate tensor.
Together with these equations, a constitutive law and the appropriate boundary conditions should be considered. The 

mechanical and thermal problem will be solved iteratively.
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Considering a plate domain � = � ×I with (x, y) ∈ � and z ∈ I , we assume the separated approximation of the velocity 
field

v(x, y, z) =
⎛
⎝ u(x, y, z)

v(x, y, z)
w(x, y, z)

⎞
⎠ ≈

N∑
i=1

⎛
⎝ ui

xy(x, y) · ui
z(z)

vi
xy(x, y) · vi

z(z)
wi

xy(x, y) · wi
z(z)

⎞
⎠

where uxy(x, y), vxy(x, y) and wxy(x, y) are function of the in-plane coordinates, whereas uz(z), vi
z(z) and wz(z) are func-

tions involving the thickness coordinate. Similarly, the strain rate tensor can be expressed in separated form. For intensive 
variables, such as viscosity, the separated representation is performed by invoking again the PGD approximation, in that case 
equivalent to the SVD, as described in detail in chapter 3 of [14], which allows obtaining its in-plane/out-of-plane separated 
representation:

μ(x, y, z) =
M∑

k=1

μk
xy(x, y) · μk

z(z)

For obtaining this separated representation, we interpolate the viscosity at each position ((x, y)i, zk), with i referring to 
the node associated with the in-plane mesh and k the one associated with the thickness direction, which will be denoted 
by μik . Applying the SVD to the matrix μik , we obtain the in-plane and out-of-plane vectors, allowing us to write the above 
separated representation of the viscosity.

Two different constitutive laws have been considered. In the linear case, the constitutive equation reads:{ ∇p = μ∇ · (∇v)

∇ · v = 0

where p and μ are the pressure and the viscosity of the fluid, respectively.
To circumvent the problems related to the development of stable mixed formulations (i.e., approximations verifying the 

LBB condition) within the separated representation, a penalty formulation is considered, which modifies the mass balance 
by introducing a penalty coefficient λ small enough

∇ · v + λp = 0

or, more explicitly,

p = −1

λ

(
∂u

∂x
+ ∂v

∂ y
+ ∂ w

∂z

)
= −∇ · v

λ

By replacing it into the momentum balance (first equation in (1)), we obtain

∇ (∇ · v) + ξ
v = 0

with ξ = μλ. After some elementary algebra, it results⎛
⎜⎜⎝

∂2u
∂x2 + ∂

∂x
∂v
∂ y + ∂

∂x
∂ w
∂z

∂
∂ y

∂u
∂x + ∂2 v

∂ y2 + ∂
∂ y

∂ w
∂z

∂
∂z

∂u
∂x + ∂

∂z
∂v
∂ y + ∂2 w

∂z2

⎞
⎟⎟⎠ + ξ

⎛
⎜⎜⎝

∂2u
∂x2 + ∂2u

∂ y2 + ∂2u
∂z2

∂2 v
∂x2 + ∂2 v

∂ y2 + ∂2 v
∂z2

∂2 w
∂x2 + ∂2 w

∂ y2 + ∂2 w
∂z2

⎞
⎟⎟⎠ = 0

The flow model can readily be extended to power-law fluids:{ ∇p = ∇ · T
∇ · v = 0

(3)

where the extra-stress tensor T writes:

T = 2Kd
n−1

d (4)

with K and n two rheological parameters and the equivalent strain rate d given by:

d =
√

2(d : d)

where “:” denotes the tensor product twice contracted.
In order to perform the in-plane/out-of-plane decomposition, the system of PDEs defined by Eqs. (1)–(2) should be 

written in its variational form. For instance, assuming linear behavior and a penalty formulation, the variational formulation 
writes:

a(w, v) + ξb(w, v) = 0 (5)
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Fig. 2. Voronoi tessellation to perform the SCNI.

with

a(w, v) =
∫
�

∇ · w ∇ · v d� and b(w, v) =
∫
�

∇w : ∇v d�

where a and b are the bilinear forms related to the incompressibility and viscous terms; v and w are the trial and test 
functions, respectively.

Then, it is assumed that the first n − 1 modes of the PGD solution have been previously obtained. To further enrich this 
solution with another functional product, the following problem needs to be solved:

v(x, y, z) =
⎛
⎝ u(x, y, z)

v(x, y, z)
w(x, y, z)

⎞
⎠ ≈

n−1∑
i=1

⎛
⎝ ui

xy(x, y) · ui
z(z)

vi
xy(x, y) · vi

z(z)
wi

xy(x, y) · wi
z(z)

⎞
⎠ + R(x, y) ◦ S(z) (6)

where the second term on the right-hand side represents the enrichment and the symbol ‘◦’ denotes the so-called entry-
wise Hadamard or Schur multiplication for vectors.

The test function is defined by:

w = R∗(x, y) ◦ S(z) + R(x, y) ◦ S∗(z) (7)

Introducing Eqs. (6) and (7) into Eq. (5), a non-linear problem results, due the presence of the products of the unknown 
PGD modes. This is the case even when the original problem is linear. To solve this non-linearity, an alternated-direction, 
fixed-point algorithm is used, which has proved to be simple and robust within the PGD framework [14,17].

2.2. FE-SCNI

In the proposed strategy, after nodal position updating, their orthogonal projections into a 2D domain defined by the 
in-plane coordinates and the 1D projection onto the domain thickness constitute the nodal position of the interpolant spaces 
used for the PGD solution. An additional problem is faced, since the 2D mesh will be, eventually, very distorted and the 
numerical integration of the discrete operators may be not accurate enough.

Chen et al. [18] introduced the SCNI technique to perform an accurate nodal integration in meshless methods. Indeed, it 
has been observed [19,13] that SCNI can be incorporated into traditional FE formulations to produce a very robust method 
to deal with highly distorted meshes with almost no loss of accuracy.

The SCNI is based on the assumed strain method, in which a modified gradient is introduced at the integration point 
(node):

∇̃v(xi) = 1

Ai

∫
�i

∇v(x)d�

where xi are the coordinates of node ni and Ai the area defined by the cell �i . The set of cells defines a partition of the 
2D domain. Typically, a Voronoi tessellation is used (see Fig. 2), although any type of non-overlapping tilling can be used.

The modified strain rate tensor is given by

d̃(xi) = 1

Ai

∫
�i

d(x)d� = 1

Ai

∫
�i

⎛
⎜⎜⎜⎝

∂u
∂x

1
2

(
∂u
∂ y + ∂v

∂x

)
1
2

(
∂u
∂z + ∂ w

∂x

)
1
2

(
∂u
∂ y + ∂v

∂x

)
∂v
∂ y

1
2

(
∂v
∂z + ∂ w

∂ y

)
1
2

(
∂u
∂z + ∂ w

∂x

) 1
2

(
∂v
∂z + ∂ w

∂ y

)
∂ w
∂z

⎞
⎟⎟⎟⎠d�
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Applying the divergence theorem, it results:

d̃(xi) = 1

Ai

∫
�i

⎛
⎜⎝

u(x)nx
1
2 (u(x)ny + v(x)nx)

1
2 (u(x)nz + w(x)nx)

1
2 (u(x)ny + v(x)nx) v(x)ny

1
2 (v(x)nz + w(x)ny)

1
2 (u(x)nz + w(x)nx)

1
2 (v(x)nz + w(x)ny) w(x)nz

⎞
⎟⎠ d�

Thus, in order to compute the strain rate at each node considered for integrating the weak form, it suffices to approxi-
mate the different components of the velocity field in each element by using standard shape functions, such as piecewise 
linear interpolants, and then to evaluate the integral on the boundary of the cell associated with each node. The cell being 
typically polyhedral (for example when considering the Voronoi cells), a numerical quadrature consisting of few integration 
points is used for evaluating the boundary integral on each face of the polyhedral cell.

It is important to note that it allows us to avoid the explicit calculation of the shape function derivatives.

3. Validation of the strategy

3.1. Revisiting PGD through a Poisson’s problem

This first example analyzes the PGD solution of a Poisson’s problem:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩


u = f in � = (0,2) × (0,1)

u = 0 on x = 0

u = 0 on y = 0

u = −y(y − 1) on x = 2

∂u

∂ y
= g(x) on y = 1

where the source term has been considered as

f (x, y) = −20 exp((1 − x)2/0.1)exp((0.5 − y)2/0.1)

The function associated with natural boundary condition reads:

g(x) =
{

0, if x ≤ 0.5

1, if x > 0.5

The most typical structure of a PGD approximation to the problem is to look for a solution of the form:

u(x, y) ≈
N∑

i=1

Fi(x) · Gi(y)

Here, a stopping criterion was set at 10−4 as tolerance for the residual. This leads around 40 PGD functional pairs or 
“modes”, depending on the number of the 2D points considered. When new points are introduced, the solution becomes 
richer and more PGD modes are necessary to capture the finest solution features.

In Fig. 3, the absolute error (in infinity norm) of the PGD solution is presented. A 2D standard FEM solution in a fine-
enough mesh was considered as a reference solution. Obviously, the more points are considered in the domain, the more 
information we get and the lesser error is obtained. This method is approximately of order one with respect to the number 
of points used.

The reference solution and the reconstructed PGD solution in the points of the 2D domain are presented in Fig. 4, where 
the reference solution is represented as a continuous surface and the PGD solution as spheres in the introduced points. The 
PGD solution is in very good agreement with the fully 2D solution, while it is computed only with the cost of a set of 1D 
problems.

3.2. Unsteady convection–diffusion equation

In this section the updated Lagrangian framework is considered and analyzed. For that purpose, the transient rotating 
pulse (advection–diffusion) example proposed in [2] is solved. The problem reads:⎧⎪⎪⎨

⎪⎪⎩
ut + a · ∇u − ∇ · (ν∇u) = s in � = (0,1) × (0,1) (a)

u = 0 on ∂� (b)

u = 0 at t = 0 (c)

(8)
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Fig. 3. PDE absolute error.

Fig. 4. Reference versus PGD solution.

with a small diffusion ν = 10−5, a = (−y + 0.5, x − 0.5) and

s =
{

cos(π/2
√

x2
c + y2

c ), if
√

x2
c + y2

c ≤ 1

0, otherwise

with (xc, yc) = (x − 0.2, y − 0.2).
It is well known that an Eulerian FEM solution requires stabilization regardless of the time integration scheme selected. 

Here we have used, as a reference solution, a streamline-upwind Petrov–Galerkin (SUPG) discretization in space and an 
implicit multistage Padé method R2,2 as time integration scheme [2]. The stabilized weak form of the time discretized 
problem is given by(

w,

u


t

)
− (w, W 
ut) +

∑
e

(τP(w),R(
u))�e = (
w, gun

t

)
where


u =
(

un+ 1
2 − un

un+1 − un+ 1
2

)

ut =

⎛
⎝ u

n+ 1
2

t − un
t

un+1
t − u

n+ 1
2

t

⎞
⎠


u is the primary variable, w is the test function and 
t the chosen time step. The partial time derivatives are obtained 
from the governing equation (8a),

un
t = sn −L(un)

where L is the associated linear differential operator.
The matrix W and the vector g are useful to express the Padé scheme in a compact form and read:
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Fig. 5. Relative errors in L2 norm.

W = 1

24

(
7 −1

13 5

)
g = 1

2

(
1
1

)
The operator P(w) characterizes the stabilization technique, in this case a SUPG,

P(w) := W (a · ∇)w

The time-dependent residual R reads

R(
u) = 
u


t
− W 
ut − gun

t

Finally, τ is the intrinsic time scale matrix which in this example reads:

τ = h

2a

[
coth(Pe) − 1

Pe

]
W −1

where h is the mesh size, a is the convection magnitude and Pe the Péclet number.
It is important to note that, even when using standard SUPG techniques, the solution exhibits oscillations near the 

boundary. In the updated Lagrangian approach, the convective term does not appear, and therefore stabilization is not 
necessary and oscillations naturally disappear. In an updated Lagrangian approach, the problem reads:

ut − ν∇2u = s

where ut represents the material derivative calculated along the flow streamlines related to the velocity field a.
If an implicit temporal scheme is used, and the increment of u, 
u = un+1 − un , is selected as primary variable, the 

semi-discretized equation to solve at each time step, reads:


u


t
− ν∇2 (
u) = sn+1 + ν∇2un

To solve this problem using the PGD, the trial and test functions are constructed as in the previous example, as


u(x, y) ≈
n−1∑
i=1


ui
x(x) · 
ui

y(y) + R(x) · S(y)

and

w = R∗(x) · S(y) + R(x) · S∗(y)

respectively. Moreover, in the time step n + 1 the known fields un and sn+1 should be expressed in separated form by 
invoking a standard SVD.

This problem has been solved by the proposed strategy for different times in [0, π ] and compared with a reference FEM 
solution with no oscillations thanks to a higher diffusion coefficient. In Fig. 5, relative errors in L2 norm for a value of the 
diffusion coefficient of 10−3 are presented. It can be seen that even with a number of points not too high (about 1000), 
the errors are small, between 2% and 10% throughout the complete simulation. These values are reasonable in an industrial 
context.

It is also remarkable that the method has a greater robustness in problems where convection is dominant. Indeed, if 
the diffusion coefficient is set to 10−5, the FEM solution presents oscillations near the boundary, regardless of the time 
integration scheme used [2]. However, it can be seen in Fig. 6 that the proposed strategy provides a solution that does not 
present these oscillations on the border. The SUPG solution is presented as a continuous surface while the PGD solution 
is presented with spheres at the material points positions. Moreover, thanks to the separation of variables, the problem 
solution exhibits roughly a 1D computational cost.
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Fig. 6. FEM solution versus PGD solution in a convection-dominated problem.

Fig. 7. FSW kinematics model.

4. FSW-like kinematics

FSW is a solid-state welding technique which, since its invention in 1991, is of great interest to the industry [23]. The 
FSW welding process is conceptually simple. A non-consumable rotating tool with a specially designed pin and shoulder is 
inserted into the abutting edges of sheets or plates to be joined and traversed along the line of joint. The tool heats the 
workpiece ant its stir movement produces the joint.

In this work, a simplified model of the kinematics of this process has been tested with the proposed strategy. The 
viscous flow expressed in Eq. (1) has been solved considering a non-linear behavior law (a power law, Eq. (4)). For the 
sake of simplicity and without loss of generality, the thermal problem has been omitted, considering an isothermal process 
without mechanical dissipation. The boundary conditions consists of an imposed velocity (V adv) far away from the tool (∂�) 
and of an imposed tangential velocity (V tg) at the tool surface (∂�). In Fig. 7, a scheme of the problem is depicted. Thus, 
the problem reads,⎧⎪⎪⎨

⎪⎪⎩
∇ · σ = 0 in �

∇ · v = 0 in �

v = V adv on ∂�

v = V tg on ∂�

Even when neither the real technological parameters (constitutive model, friction law, . . . ) nor the actual geometry of the 
tools are implemented, the feasibility of the numerical algorithm is proved: a 3D flow model can be solved in an updated 
Lagrangian framework with a computational cost characteristic of 2D simulations. Moreover, the thermomechanical history 
(mechanical history in this case) of the material particles is computed directly from the simulation. For instance, we can 
study the evolution of the viscosity of a material particle during the process. In Fig. 8, we can observe how the viscosity of 
the material particle decreases when it approaches the tool, where the strain rates are high due to the rotation of the pin.
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Fig. 8. Viscosity of a material particle with respect to the distance to the entrance.

Fig. 9. Material viscosity along some material pathlines.

Fig. 10. Direct visualization of material mixing.

The streamlines are not computed a posteriori, they are simply the different positions of the material particles obtained 
during the simulation. In Fig. 9, the paths of some of these material points are shown. Moreover, it is well known from the 
literature [24] that the material flow play a fundamental role in the quality of the welding, and some typical defects such 
the tunnel effect can be predicted with its analysis. This method provides a direct way to perform this study; indeed the 
material particles of both welded plates are easily tracked just attaching an scalar value to them. In Fig. 10, this application 
is shown using two colors to represent the two different plates to joint. The relative position between the particles of the 
two plates behind the tool could indicate, using the appropriate techniques, the existence of defects.
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5. Conclusions and perspectives

Simulation of material forming processes is one of these scenarios where traditional simulations encounter many diffi-
culties. Recently, PGD appears as an appealing technique for reducing the computational complexity of models defined in 
3D plate-like geometries. In this work, we proved that it is possible to combine the PGD with a robust integration method 
to create efficient updated Lagrangian simulations.

The examples presented prove the feasibility of the technique. The consideration of more realistic and complex processes 
with specific industrial application constitutes a work in progress.
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