24 research outputs found

    Pro-inflammatory activation following demyelination is required for myelin clearance and oligodendrogenesis

    Get PDF
    Remyelination requires innate immune system function, but how exactly microglia and macrophages clear myelin debris after injury and tailor a specific regenerative response is unclear. Here, we asked whether pro-inflammatory microglial/macrophage activation is required for this process. We established a novel toxin-based spinal cord model of de- and remyelination in zebrafish and showed that pro-inflammatory NF-κB-dependent activation in phagocytes occurs rapidly after myelin injury. We found that the pro-inflammatory response depends on myeloid differentiation primary response 88 (MyD88). MyD88-deficient mice and zebrafish were not only impaired in the degradation of myelin debris, but also in initiating the generation of new oligodendrocytes for myelin repair. We identified reduced generation of TNF-α in lesions of MyD88-deficient animals, a pro-inflammatory molecule that was able to induce the generation of new premyelinating oligodendrocytes. Our study shows that pro-inflammatory phagocytic signaling is required for myelin debris degradation, for inflammation resolution, and for initiating the generation of new oligodendrocytes

    Non Linear Programming (NLP) Formulation for Quantitative Modeling of Protein Signal Transduction Pathways

    Get PDF
    Modeling of signal transduction pathways plays a major role in understanding cells' function and predicting cellular response. Mathematical formalisms based on a logic formalism are relatively simple but can describe how signals propagate from one protein to the next and have led to the construction of models that simulate the cells response to environmental or other perturbations. Constrained fuzzy logic was recently introduced to train models to cell specific data to result in quantitative pathway models of the specific cellular behavior. There are two major issues in this pathway optimization: i) excessive CPU time requirements and ii) loosely constrained optimization problem due to lack of data with respect to large signaling pathways. Herein, we address both issues: the former by reformulating the pathway optimization as a regular nonlinear optimization problem; and the latter by enhanced algorithms to pre/post-process the signaling network to remove parts that cannot be identified given the experimental conditions. As a case study, we tackle the construction of cell type specific pathways in normal and transformed hepatocytes using medium and large-scale functional phosphoproteomic datasets. The proposed Non Linear Programming (NLP) formulation allows for fast optimization of signaling topologies by combining the versatile nature of logic modeling with state of the art optimization algorithms.National Institutes of Health (U.S.) (Grant P50-GM068762)National Institutes of Health (U.S.) (Grant R24-DK090963)United States. Army Research Office (Grant W911NF-09-0001)German Research Foundation (Grant GSC 111

    An Optimized Protocol for the Generation of Alveolospheres from Wild-Type Mice

    No full text
    Organoid models have become an integral part of the research methodology in the lung field. These systems allow for the study of progenitor and stem cell self-renewal, self-organization, and differentiation. Distinct models of lung organoids mimicking various anatomical regions of mature lungs have emerged in parallel to the increased gain of knowledge regarding epithelial stem and progenitor cell populations and the corresponding mesenchymal cells that populate the in vivo niche. In the distal lung, type 2 alveolar epithelial cells (AEC2s) represent a stem cell population that is engaged in regenerative mechanisms in response to various insults. These cells self-renew and give rise to AEC1s that carry out gas exchange. Multiple experimental protocols allowing the generation of alveolar organoids, or alveolospheres, from murine lungs have been described. Among the drawbacks have been the requirement of transgenic mice allowing the isolation of AEC2s with high viability and purity, and the occasional emergence of bronchiolar and bronchioalveolar organoids. Here, we provide a refined gating strategy and an optimized protocol for the generation of alveolospheres from wild-type mice. Our approach not only overcomes the need for transgenic mice to generate such organoids, but also yields a pure culture of alveolospheres that is devoid of bronchiolar and bronchioalveolar organoids. Our protocol contributes to the standardization of this important research tool

    The Tree of Sirtuins and the Garden of Cardiovascular Youth

    No full text
    Sirtuins (SIRTs) are a class of nicotine adenine dinucleotide (NAD+)-dependent proteins which participate in numerous molecular pathways involved in various age-related human diseases, such as type II diabetes, cardiovascular (CV) diseases and cancer. They have a major role in apoptosis, inflammation, oxidative stress and metabolism regulation, traits that have a great impact on CV physiology and pathology. Their unique profile of NAD+ energy dependency makes them an appealing target for human intervention in cellular and metabolic processes. This review focuses on the recent advances of SIRTs research aiming to shed light on the emerging roles of SIRTs in the pathophysiology of CV and metabolic diseases

    Alzheimer’s disease research progress in the Mediterranean region:the Alzheimer’s Association International Conference Satellite Symposium

    Get PDF
    As research and services in the Mediterranean region continue to increase, so do opportunities for global collaboration. To support such collaborations, the Alzheimer's Association was due to hold its seventh Alzheimer's Association International Conference Satellite Symposium in Athens, Greece in 2021. Due to the COVID-19 pandemic, the meeting was held virtually, which enabled attendees from around the world to hear about research efforts in Greece and the surrounding Mediterranean countries. Research updates spanned understanding the biology of, treatments for, and care of people with Alzheimer's disease (AD_ and other dementias. Researchers in the Mediterranean region have outlined the local epidemiology of AD and dementia, and have identified regional populations that may expedite genetic studies. Development of biomarkers is expected to aid early and accurate diagnosis. Numerous efforts have been made to develop culturally specific interventions to both reduce risk of dementia, and to improve quality of life for people living with dementia

    Alzheimer's disease research progress in the Mediterranean region : The Alzheimer's Association International Conference Satellite Symposium

    No full text
    As research and services in the Mediterranean region continue to increase, so do opportunities for global collaboration. To support such collaborations, the Alzheimer's Association was due to hold its seventh Alzheimer's Association International Conference Satellite Symposium in Athens, Greece in 2021. Due to the COVID-19 pandemic, the meeting was held virtually, which enabled attendees from around the world to hear about research efforts in Greece and the surrounding Mediterranean countries. Research updates spanned understanding the biology of, treatments for, and care of people with Alzheimer's disease (AD_ and other dementias. Researchers in the Mediterranean region have outlined the local epidemiology of AD and dementia, and have identified regional populations that may expedite genetic studies. Development of biomarkers is expected to aid early and accurate diagnosis. Numerous efforts have been made to develop culturally specific interventions to both reduce risk of dementia, and to improve quality of life for people living with dementia
    corecore