192 research outputs found

    Annual Sedimentary Record From Lake Donguz-Orun (Central Caucasus) Constrained by High Resolution SR-XRF Analysis and Its Potential for Climate Reconstructions

    Get PDF
    Bottom sediments of the proglacial Lake Donguz-Orun situated at ∼2500 m a.s.l. in the Elbrus Region (Central Caucasus) reveal regular laminae, characteristic of proglacial varved lakes. This is the first laminated sediment sequence recorded in the region. However, visual counting of the layers was restricted due to partial indistinctness of the lamination. In order to confirm the annual sedimentary cyclicity and proceed with annually resolved data, in addition to the visual identification we used high-resolution geochemical markers. The upper 160 mm of the sediment core were scanned at 200 μm intervals using synchrotron radiation X-ray fluorescence analysis (SR-XRF). Additional ultrahigh resolution scanning at 30 μm increments was employed for the upper 20 mm of the core. The Rb/Sr and Zr/Rb ratios are interpreted to record annual changes in grain-size. Based on this geochemical assessment, we identified 88 annual layers covering the interval between 1922 and 2010, while visually we have been able to identify between 70 and 100 layers. The correctness of the geochemical results is confirmed by mean accumulation rates assessed by 137Cs and 210Pb dating. Cross-correlation between the ring width of local pine chronology and the layer thickness, identified as a distance between the annual Rb/Sr peaks, allowed for the accurate dating of the uppermost preserved year of the sediment sequence (AD 2010). Annually averaged elemental data were then compared with regional meteorological observations, glacier mass balance and tree-ring chronologies. The comparison revealed notable conformities: content of bromine is positively correlated with annual temperatures (r = 0.41, p < 0.01), content of terrigenous elements (major elements with the origin in watershed rocks) is positively correlated (up to r = 0.44, p < 0.01) with annual precipitation. A high statistically significant negative relationship is observed between the concentrations of terrigenous elements and tree-ring width of local pine chronology (up to r = -0.56, p < 0.01). Taken together, these data point to a common composite climatic signal in the two independent records (lake sediments and tree rings) and confirm that the laminae represent annual layers (i.e., varves). These findings open opportunities for high-resolution multiproxy climate reconstructions 300–350 years long using the longer sediment core and tree-ring records

    Long-Term Results of Cell-Free Biodegradable Scaffolds for In Situ Tissue-Engineering Vasculature: In a Canine Inferior Vena Cava Model

    Get PDF
    We have developed a new biodegradable scaffold that does not require any cell seeding to create an in-situ tissue-engineering vasculature (iTEV). Animal experiments were conducted to test its characteristics and long-term efficacy. An 8-mm tubular biodegradable scaffold, consisting of polyglycolide knitted fibers and an L-lactide and ε-caprolactone copolymer sponge with outer glycolide and ε-caprolactone copolymer monofilament reinforcement, was implanted into the inferior vena cava (IVC) of 13 canines. All the animals remained alive without any major complications until euthanasia. The utility of the iTEV was evaluated from 1 to 24 months postoperatively. The elastic modulus of the iTEV determined by an intravascular ultrasound imaging system was about 90% of the native IVC after 1 month. Angiography of the iTEV after 2 years showed a well-formed vasculature without marked stenosis or thrombosis with a mean pressure gradient of 0.51±0.19 mmHg. The length of the iTEV at 2 years had increased by 0.48±0.15 cm compared with the length of the original scaffold (2–3 cm). Histological examinations revealed a well-formed vessel-like vasculature without calcification. Biochemical analyses showed no significant differences in the hydroxyproline, elastin, and calcium contents compared with the native IVC. We concluded that the findings shown above provide direct evidence that the new scaffold can be useful for cell-free tissue-engineering of vasculature. The long-term results revealed that the iTEV was of good quality and had adapted its shape to the needs of the living body. Therefore, this scaffold would be applicable for pediatric cardiovascular surgery involving biocompatible materials

    Comparison of thermal effects of stilbenoid analogs in lipid bilayers using differential scanning calorimetry and molecular dynamics: correlation of thermal effects and topographical position with antioxidant activity

    Get PDF
    In previous studies it was shown that cannabinoids (CBs) bearing a phenolic hydroxyl group modify the thermal properties of lipid bilayers more significantly than methylated congeners. These distinct differential properties were attributed to the fact that phenolic hydroxyl groups constitute an anchoring group in the vicinity of the headgroup, while the methylated analogs are embedded deeper towards the hydrophobic region of the lipid bilayers. In this work the thermal effects of synthetic polyphenolic stilbenoid analogs and their methylated congeners have been studied using differential scanning calorimetry (DSC).Molecular dynamics (MD) simulations have been performed to explain the DSC results. Thus, two of their phenolic hydroxyl groups orient in the lipid bilayers in such a way that they anchor in the region of the headgroup. In contrast, their methoxy congeners cannot anchor effectively and are embedded deeper in the hydrophobic segment of the lipid bilayers. The MD results explain the fact that hydroxystilbenoid analogs exert more significant effects on the pretransition than their methoxy congeners, especially at low concentrations. To maximize the polar interactions, the two phenolic hydroxyl groups are localized in the vicinity of the head-group region, directing the remaining hydroxy group in the hydrophobic region. This topographical position of stilbenoid analogs forms a mismatch that explains the significant broadening of the width of the phase transition and lowering of the main phasetransition temperature in the lipid bilayers. At high concentrations, hydroxy and nonhydroxy analogs appear to form different domains. The correlation of thermal effects with antioxidant activity is discusse

    The formation of human populations in South and Central Asia

    Get PDF
    By sequencing 523 ancient humans, we show that the primary source of ancestry in modern South Asians is a prehistoric genetic gradient between people related to early hunter-gatherers of Iran and Southeast Asia. After the Indus Valley Civilization’s decline, its people mixed with individuals in the southeast to form one of the two main ancestral populations of South Asia, whose direct descendants live in southern India. Simultaneously, they mixed with descendants of Steppe pastoralists who, starting around 4000 years ago, spread via Central Asia to form the other main ancestral population. The Steppe ancestry in South Asia has the same profile as that in Bronze Age Eastern Europe, tracking a movement of people that affected both regions and that likely spread the distinctive features shared between Indo-Iranian and Balto-Slavic languages

    Nongenetic Determinants of Risk for Early-Onset Colorectal Cancer

    Get PDF
    Background: Incidence of early-onset (younger than 50 years of age) colorectal cancer (CRC) is increasing in many countries. Thus, elucidating the role of traditional CRC risk factors in early-onset CRC is a high priority. We sought to determine whether risk factors associated with late-onset CRC were also linked to early-onset CRC and whether association patterns differed by anatomic subsite. Methods: Using data pooled from 13 population-based studies, we studied 3767 CRC cases and 4049 controls aged younger than 50 years and 23 437 CRC cases and 35 311 controls aged 50 years and older. Using multivariable and multinomial logistic regression, we estimated odds ratios (ORs) and 95% confidence intervals (CIs) to assess the association between risk factors and early-onset CRC and by anatomic subsite. Results: Early-onset CRC was associated with not regularly using nonsteroidal anti-inflammatory drugs (OR = 1.43, 95% CI = 1.21 to 1.68), greater red meat intake (OR = 1.10, 95% CI = 1.04 to 1.16), lower educational attainment (OR = 1.10, 95% CI = 1.04 to 1.16), alcohol abstinence (OR = 1.23, 95% CI = 1.08 to 1.39), and heavier alcohol use (OR = 1.25, 95% CI = 1.04 to 1.50). No factors exhibited a greater excess in early-onset compared with late-onset CRC. Evaluating risks by anatomic subsite, we found that lower total fiber intake was linked more strongly to rectal (OR = 1.30, 95% CI = 1.14 to 1.48) than colon cancer (OR = 1.14, 95% CI = 1.02 to 1.27; P = .04). Conclusion: In this large study, we identified several nongenetic risk factors associated with early-onset CRC, providing a basis for targeted identification of those most at risk, which is imperative in mitigating the rising burden of this disease

    HCV genome-wide genetic analyses in context of disease progression and hepatocellular carcinoma

    Get PDF
    <div><p>Hepatitis C virus (HCV) is a major cause of hepatitis and hepatocellular carcinoma (HCC) world-wide. Most HCV patients have relatively stable disease, but approximately 25% have progressive disease that often terminates in liver failure or HCC. HCV is highly variable genetically, with seven genotypes and multiple subtypes per genotype. This variation affects HCV’s sensitivity to antiviral therapy and has been implicated to contribute to differences in disease. We sequenced the complete viral coding capacity for 107 HCV genotype 1 isolates to determine whether genetic variation between independent HCV isolates is associated with the rate of disease progression or development of HCC. Consensus sequences were determined by sequencing RT-PCR products from serum or plasma. Positions of amino acid conservation, amino acid diversity patterns, selection pressures, and genome-wide patterns of amino acid covariance were assessed in context of the clinical phenotypes. A few positions were found where the amino acid distributions or degree of positive selection differed between in the HCC and cirrhotic sequences. All other assessments of viral genetic variation and HCC failed to yield significant associations. Sequences from patients with slow disease progression were under a greater degree of positive selection than sequences from rapid progressors, but all other analyses comparing HCV from rapid and slow disease progressors were statistically insignificant. The failure to observe distinct sequence differences associated with disease progression or HCC employing methods that previously revealed strong associations with the outcome of interferon α-based therapy implies that variable ability of HCV to modulate interferon responses is not a dominant cause for differential pathology among HCV patients. This lack of significant associations also implies that host and/or environmental factors are the major causes of differential disease presentation in HCV patients.</p></div

    Conformational Targeting of Fibrillar Polyglutamine Proteins in Live Cells Escalates Aggregation and Cytotoxicity

    Get PDF
    Misfolding- and aggregation-prone proteins underlying Parkinson's, Huntington's and Machado-Joseph diseases, namely alpha-synuclein, huntingtin, and ataxin-3 respectively, adopt numerous intracellular conformations during pathogenesis, including globular intermediates and insoluble amyloid-like fibrils. Such conformational diversity has complicated research into amyloid-associated intracellular dysfunction and neurodegeneration. To this end, recombinant single-chain Fv antibodies (scFvs) are compelling molecular tools that can be selected against specific protein conformations, and expressed inside cells as intrabodies, for investigative and therapeutic purposes.Using atomic force microscopy (AFM) and live-cell fluorescence microscopy, we report that a human scFv selected against the fibrillar form of alpha-synuclein targets isomorphic conformations of misfolded polyglutamine proteins. When expressed in the cytoplasm of striatal cells, this conformation-specific intrabody co-localizes with intracellular aggregates of misfolded ataxin-3 and a pathological fragment of huntingtin, and enhances the aggregation propensity of both disease-linked polyglutamine proteins. Using this intrabody as a tool for modulating the kinetics of amyloidogenesis, we show that escalating aggregate formation of a pathologic huntingtin fragment is not cytoprotective in striatal cells, but rather heightens oxidative stress and cell death as detected by flow cytometry. Instead, cellular protection is achieved by suppressing aggregation using a previously described intrabody that binds to the amyloidogenic N-terminus of huntingtin. Analogous cytotoxic results are observed following conformational targeting of normal or polyglutamine-expanded human ataxin-3, which partially aggregate through non-polyglutamine domains.These findings validate that the rate of aggregation modulates polyglutamine-mediated intracellular dysfunction, and caution that molecules designed to specifically hasten aggregation may be detrimental as therapies for polyglutamine disorders. Moreover, our findings introduce a novel antibody-based tool that, as a consequence of its general specificity for fibrillar conformations and its ability to function intracellularly, offers broad research potential for a variety of human amyloid diseases
    corecore