1,643 research outputs found

    One model to rule them all: unified classification model for geotagging websites

    Full text link
    The paper presents a novel approach to finding regional scopes (geotagging) of websites. It relies on a single binary classification model per region type to perform the multi-label classification and uses a variety of different features that have not been yet used together for machine-learning based regional classification of websites. The evaluation demonstrates the advantage of our one model per region type method versus the traditional one model per region approach

    Study of Transient Interaction in a System with Transformer Supplied from Network through a Cable: Assessment of Interaction Frequencies and Resonance Evolvement

    Get PDF
    Transformer together with its windings is a complex oscillatory system. The interaction between the transformer and an electric network during transients can cause the development of resonance phenomenon in the windings leading to overvoltages and the risk of transformer fault. This report presents the results of studies of resonance phenomena in transformer windings, caused by interaction with an electric network containing the feeder cable. The approach to a simple assessment of dominant oscillation frequency of a voltage in the system “feeder cable – transformer” and estimation of the resonant frequencies of transformer winding is considered. The report also describes the technique for measurement of winding resonance voltages. The resonance phenomenon evolvement in transformer windings is considered and the impact of decaying oscillating applied voltage on maximum ratio of resonance overvoltages is estimated

    Reclaiming of Monoethanolamine (MEA) Used in Post-Combustion CO2-capture with Electrodialysis

    Get PDF
    AbstractHeat-stable salts (HSS) in amine-based solvents may lead to a long-term performance impairment of post-combustion CO2- capture process system. They can cause a loss of solvent capacity, corrosion, heat exchanger fouling, increased foaming or flooding, etc. The application of electrodialysis (ED) can be a possible cost effective technique for removal of HSS from degraded amine solutions. The paper presents the results of lab-scale ED experiments on HSS removal from synthetic degraded MEA solutions with different HSS content and CO2-loadings. The efficiency of ED-process for reclaiming of MEA solvent is shown. The influence of solvent CO2-loading on the specific energy consumption of ED-process is presented. The lab-scale data have been used for design and manufacturing of a pilot ED plant. Within the OCTAVIUS project it has been planned to test the ED-pilot plant at the EnBW post-combustion CO2 capture pilot plant

    Study of the machinability of an Inconel 625 composite with added NiTi-TiB2 fabricated by direct laser deposition

    Get PDF
    This work studies the process feasibility of milling a metal-matrix composite based on Inconel 625 with added NiTi-TiB2 fabricated by direct laser deposition. The composite is intended for manufacturing turbine blades and it has strength characteristics on par with those of Inconel 625. However, the addition of TiB2 has improved its heat and wear resistance. This material is new, and its machinability has not been studied. The new composite was milled with end mill cutters, and recommendations were worked out on the cutting speed, feed per tooth, cutter flank angle, as well as depth and width of milling. The wear of cutter teeth flank was more intense. After the flank wear land on the back surface of a tooth had reached 0.11–0.15 mm, there was a sharp increase in the forces applied which was followed by brittle fracture of the tooth. Milling at a speed of 25 m/min ensured 28 min of stable operation. However, afterwards the critical wear value of 0.11 mm was quickly approached at a cutting speed of 50 m/min, and critical wear followed after 14 min.я Dependencies of the cutting forces vs. time for all the selected cutting speeds and throughout the entire testing time period have a tendency to increase, which indicates the influence of cutter wear on the cutting forces. It was found that the durability of the cutters increases with an increase in the milling width and a decrease in the milling depth

    Size effects in near-ultraviolet Raman spectra of few-nanometer-thick silicon-oninsulator nanofilms

    Get PDF
    We have fabricated Si-on-insulator (SOI) layers with a thickness h1 of a few nanometers and examined them by Raman spectroscopy with 363.8 nm excitation. We have found that phonon and electron confinement play important roles in SOI with h1<10 nm. We have confirmed that the first-order longitudinal optical phonon Raman band displays size-induced major homogeneous broadening due to phonon lifetime reduction as well as minor inhomogeneous broadening due to wave vector relaxation (WVR), both kinds of broadening being independent of temperature. Due to WVR, transverse acoustic (TA) phonons become Raman-active and give rise to a broad band in the range of 100–200 cm 1. Another broad band appeared at 200–400 cm 1 in the spectrum of SOI is attributed to the superposition of 1st order Raman scattering on longitudinal acoustic phonons and 2nd order scattering on TA phonons. Suppression of resonance-assisted 2-nd order Raman bands in SOI spectra is explained by the electron-confinement-induced direct band gap enlargement compared to bulk Si, which is confirmed by SOI reflection spectra. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4947021

    Twisted polaritonic crystals in thin van der Waals slabs

    Full text link
    Polaritons - hybrid light-mater excitations - are very appealing for the confinement of light at the nanoscale. Recently, different kinds of polaritons have been observed in thin slabs of van der Waals (vdW) materials, with particular interest focused on phonon polaritons (PhPs) - lattice vibrations coupled to electromagnetic fields in the mid-infrared spectral range with - in biaxial crystals, such as e.g. MoO3. In particular, hyperbolic PhPs - having hyperbola-like shape of their isofrequency curves - in MoO3 can exhibit ultra-high momenta and strongly directional in-plane propagation, promising novel applications in imaging, sensing or thermal management at the nanoscale and in a planar geometry. However, the excitation and manipulation of in-plane hyperbolic PhPs have not yet been well studied and understood. Here we propose a technological platform for the effective excitation and control of in-plane hyperbolic PhPs based on polaritonic crystals (PCs) - lattices formed by elements separated by distances comparable to the PhPs wavelength -, twisted with respect to the natural vdW crystal axes. In particular, we develop a general analytical theory valid for an arbitrary PC made in a thin biaxial slab. As a practical example, we consider a twisted PC formed by rectangular hole arrays made in MoO3 slab and demonstrate the excitation of Bragg resonances tunable by the twisting angle. Our findings open novel avenues for both fundamental studies of PCs in vdW crystals and the development of mid-infrared sensing and photodetection application
    corecore