229 research outputs found

    Millennial Variability in an Idealized Ocean Model: Predicting the AMOC Regime Shifts

    No full text
    A salient feature of paleorecords of the last glacial interval in the North Atlantic is pronounced millennial variability, commonly known as Dansgaard–Oeschger events. It is believed that these events are related to variations in the Atlantic meridional overturning circulation and heat transport. Here, the authors formulate a new low-order model, based on the Howard–Malkus loop representation of ocean circulation, capable of reproducing millennial variability and its chaotic dynamics realistically. It is shown that even in this chaotic model changes in the state of the meridional overturning circulation are predictable. Accordingly, the authors define two predictive indices which give accurate predictions for the time the circulation should remain in the on phase and then stay in the subsequent off phase. These indices depend mainly on ocean stratification and describe the linear growth of small perturbations in the system. Thus, monitoring particular indices of the ocean state could help predict a potential shutdown of the overturning circulation

    AMOC sensitivity to surface buoyancy fluxes: Stronger ocean meridional heat transport with a weaker volume transport?

    Get PDF
    Oceanic northward heat transport is commonly assumed to be positively correlated with the Atlantic meridional overturning circulation (AMOC). For example, in numerical “water-hosing” experiments, imposing anomalous freshwater fluxes in the northern Atlantic leads to a slow-down of the AMOC and the corresponding reduction of oceanic northward heat transport. Here, we study the sensitivity of the ocean heat and volume transports to surface heat and freshwater fluxes using a generalized stability analysis. For the sensitivity to surface freshwater fluxes, we find that, while the direct relationship between the AMOC volume and heat transports holds on shorter time scales, it can reverse on timescales longer than 500 years or so. That is, depending on the model surface boundary conditions, reduction in the AMOC volume transport can potentially lead to a stronger heat transport on long timescales, resulting from the gradual increase in ocean thermal stratification. We discuss the implications of these results for the problem of steady state (statistical equilibrium) in ocean and climate GCM as well as paleoclimate problems including millennial climate variability

    Mean energy balance in the tropical Pacific Ocean

    Get PDF
    The maintenance of the ocean general circulation requires energy input from the wind. Previous studies estimate that the mean rate of wind work (or wind power) acting on the surface currents over the global ocean amounts to 1.1 TW (1 TW = 1012 Watts), though values remain highly uncertain. By analyzing the output from a range of ocean-only models and data assimilations, we show that the tropical Pacific Ocean contributes around 0.2 to 0.4 TW, which is roughly half of the total tropical contribution. Not only does this wind power represent a significant fraction of the total global energy input into the ocean circulation, it is also critical in maintaining the east-west tilt of the ocean thermocline along the equator. The differences in the wind power estimates are due to discrepancies in the wind stress used to force the models and discrepancies in the surface currents the models simulate, particularly the North Equatorial Counter Current and the South Equatorial Current. Decadal variations in the wind power, more prominent in some models, show a distinct decrease in the wind power in the late 1970s, consistent with the climate regime shift of that time and a flattening of the equatorial thermocline. We find that most of the wind power generated in the tropics is dissipated by friction in the mixed layer and in zonal currents with strong vertical and horizontal shears. Roughly 10 to 20% of the wind power (depending on the model) is transferred down the water column through vertical buoyancy fluxes to maintain the thermocline slope along the equator. Ultimately, this fraction of the wind power is dissipated by a combination of vertical and horizontal diffusion, energy advection out of the tropics, and damping by surface heat fluxes. Values of wind power generated in the tropical Pacific by coupled general circulation models are typically larger than those generated by ocean-only models, and range from 0.3 to 0.6 TW. Even though many models simulate a \u27realistic\u27 climate in the tropical ocean, their energy budgets can still vary greatly from one model to the next. We argue that a correct energy balance is an essential measure of how well the models represent the actual ocean physics

    Steklov-Lyapunov type systems

    Get PDF
    In this paper we describe integrable generalizations of the classical Steklov– Lyapunov systems, which are defined on a certain product so(m) × so(m), as well as the structure of rank r coadjoint orbits in so(m)×so(m). We show that the restriction of these systems onto some subvarieties of the orbits written in new matrix variables admits a new r × r matrix Lax representation in a generalized Gaudin form with a rational spectral parameter. In the case of rank 2 orbits a corresponding 2×2 La x pair for the reduced systems enables us to perform a separation of variables

    The influence of steel 35 wire EDM parameters on the surface roughness and morphology / Alexey A. Fedorov, Alexander V. Linovsky and Anatoliy P. Morgunov

    Get PDF
    The electrical discharge machining (EDM) is a non-traditional machining method that has been widely used in various industries recently. The two important EDM performance measures are the surface roughness and the surface morphology. The research results of the influence of steel 35 wire EDM parameters, particularly the number of cuts on the surface roughness and the surface morphology are presented. Using the methods of atomic force microscopy, scanning electronic microscopy and profilometry, it is shown that the roughness and morphology of the machined surfaces differs much from the theoretical one, and has some peculiar characteristics. The reasons of the difference between practical results and theory are also described. The main are suggested to be the fast front spreading of a gas bubble, turbulent eddies formed by the flow of the pumped liquid. Besides, a crater with a different structure is found and an attempt to explain its nature is made

    OPPORTUNITY ESTIMATION OF OPTICAL METHOD APPLICATION IN PROBLEM OF KINEMATIC CHARACTERISTICS REGISTRATION OF DYNAMIC INDENTING PROCESS

    Get PDF
    Subject of Research. A stereoscopic method of technical vision is proposed for recording the kinematic characteristics of the dynamic indentation process in determining the physico-mechanical properties of materials. The proposed method makes it possible to determine the values of the indenter motion speed with high accuracy. Method. The method is based on the use of two high-speed video cameras immovably fixed on one flat platform. Cameras allow for synchronous recording of the indentation process. The objectives and orientation of cameras in the stereo system provide intersection of the visual fields and the required depth of the image space field. Measurement of the movement speed is performed by triangulation method. The distance between the conjugate points of the recorded object on the stereo images is inversely proportional to the distance between the pair of cameras and the corresponding point of the object in the three-dimensional space. Based on the analysis of images obtained by spatially separated cameras, the coordinates of the object point are determined. Main Results. The experimental setup consisted of two high-speed monochrome camcorders Evercam 4000-32-M, rigidly fixed through stereo. Synchronous recording was kept at a speed of 4000 frames/s with a resolution of 1280 × 860 pixels. The indenter was made in the form of a steel ball with a mass of 230 g with a diameter of 38 mm and fell onto an aluminum disk 10 mm thick from a height of 310 mm. Video images from cameras were transferred to a personal computer for processing. The analysis of the obtained data was carried out in the MATLAB system with the help of a specially written software module. The sensitivity of the proposed method made it possible to determine confidently the values of the maximum approach speed of a steel ball equal to 2.39 m/s and a rebound velocity of 1.2 m/s. The random component of the method error did not exceed 2.5%. Practical Relevance. The development of this approach will enable to create high-precision sensors of dynamic indentation. The research results may be of interest to specialists involved in metrological support and non-destructive testing of materials and products in various fields of engineering and construction

    The UV Effect on the Chemiresistive Response of ZnO Nanostructures to Isopropanol and Benzene at PPM Concentrations in Mixture with Dry and Wet Air

    Get PDF
    Towards the development of low-power miniature gas detectors, there is a high interest in the research of light-activated metal oxide gas sensors capable to operate at room temperature (RT). Herein, we study ZnO nanostructures grown by the electrochemical deposition method over Si/SiO2_{2} substrates equipped by multiple Pt electrodes to serve as on-chip gas monitors and thoroughly estimate its chemiresistive performance upon exposing to two model VOCs, isopropanol and benzene, in a wide operating temperature range, from RT to 350 °C, and LED-powered UV illumination, 380 nm wavelength; the dry air and humid-enriched, 50 rel. %, air are employed as a background. We show that the UV activation allows one to get a distinctive chemiresistive signal of the ZnO sensor to isopropanol at RT regardless of the interfering presence of H2_{2}O vapors. On the contrary, the benzene vapors do not react with UV-illuminated ZnO at RT under dry air while the humidity’s appearance gives an opportunity to detect this gas. Still, both VOCs are well detected by the ZnO sensor under heating at a 200–350 °C range independently on additional UV exciting. We employ quantum chemical calculations to explain the differences between these two VOCs’ interactions with ZnO surface by a remarkable distinction of the binding energies characterizing single molecules, which is −0.44 eV in the case of isopropanol and −3.67 eV in the case of benzene. The full covering of a ZnO supercell by H2_{2}O molecules taken for the effect’s estimation shifts the binding energies to −0.50 eV and −0.72 eV, respectively. This theory insight supports the experimental observation that benzene could not react with ZnO surface at RT under employed LED UV without humidity’s presence, indifference to isopropanol
    • 

    corecore