9 research outputs found

    Visualization of the electronic phase separation in superconducting K x Fe 2-y Se 2

    Get PDF
    AbstractType-II iron-based superconductors (Fe-SCs), the alkali-metal-intercalated iron selenide AxFe2−ySe2 (A = K, Tl, Rb, etc.) with a superconducting transition temperature of 32 K, exhibit unique properties such as high NĂ©el temperature, Fe-vacancies ordering, antiferromagnetically ordered insulating state in the phase diagram, and mesoscopic phase separation in the superconducting materials. In particular, the electronic and structural phase separation in these systems has attracted intensive attention since it provides a platform to unveil the insulating parent phase of type-II Fe-SCs that mimics the Mott parent phase in cuprates. In this work, we use spatial- and angle-resolved photoemission spectroscopy to study the electronic structure of superconducting KxFe2−ySe2. We observe clear electronic phase separation of KxFe2−ySe2 into metallic islands and insulating matrix, showing different K and Fe concentrations. While the metallic islands show strongly dispersive bands near the Fermi level, the insulating phase shows an energy gap up to 700 meV and a nearly flat band around 700 meV below the Fermi energy, consistent with previous experimental and theoretical results on the superconducting K1−xFe2Se2 (122 phase) and Fe-vacancy ordered K0.8Fe1.6Se2 (245 phase), respectively. Our results not only provide important insights into the mysterious composition of phase-separated superconducting and insulating phases of KxFe2−ySe2, but also present their intrinsic electronic structures, which will shed light on the comprehension of the unique physics in type-II Fe-SCs

    On the floating of the topological surface state on top of a thick lead layer: The case of the Pb/Bi2Se3 interface

    Full text link
    The puzzling question about the floating of the topological surface state on top of a thick Pb layer, has now possibly been answered. A study of the interface made by Pb on Bi2Se3 for different temperature and adsorbate coverage condition, allowed us to demonstrate that the evidence reported in the literature can be related to the surface diffusion phenomenon exhibited by the Pb atoms, which leaves the substrate partially uncovered. Comprehensive density functional theory calculations show that despite the specific arrangement of the atoms at the interface, the topological surface state cannot float on top of the adlayer but rather tends to move inward within the substrate.Comment: 9 pages, 5 figure

    Gallbladder injury in a catatrauma patient: a clinical case

    No full text
    Gallbladder trauma is a rare medical emergency in abdominal surgery because of its anatomic location. Gallbladder injury occurs in only 1.9%-2.1% of cases with abdominal traumas, with an isolated injury being ten times rarer. Despite the different mechanisms of injury, intravesical hypertension is the most important factor contributing to gallbladder rupture. A fall from a height is a rare cause of gallbladder injury, with only a few cases described in the literature. Laparoscopic cholecystectomy is the most common primary treatment. In the present case report, we present the diagnosis and management of a patient with a rare combined trauma. The patient was polytraumatized but had an isolated gallbladder injury in the absence of other abdominal injuries. Modern diagnostic methods, primarily ultrasound, can be critical in determining the best treatment strategy

    Electronic band structure for occupied and unoccupied states of the natural topological superlattice phase Sb2Te

    Get PDF
    We present an experimental study describing the effects of surface termination on the electronic structure of the natural topological superlattice phase Sb2Te. Using scanning angle-resolved photoemission microscopy, we consistently find various nonequivalent regions on the same surface after cleaving various Sb2Te single crystals. We were able to identify three distinct terminations characterized by different Sb/Te surface stoichiometric ratios and with clear differences in their band structure. For the dominating Te-rich termination, we also provide a direct observation of the excited electronic states and of their relaxation dynamics by means of time-resolved angle-resolved photoemission spectroscopy. Our results clearly indicate that the surface electronic structure is strongly affected by the bulk properties of the superlattice

    The IGH locus relocalizes to a "recombination compartment" in the perinucleolar region of differentiating B-lymphocytes

    No full text
    International audienceThe immunoglobulin heavy chain (IGH) gene loci are subject to specific recombination events during B-cell differentiation including somatic hypermutation and class switch recombination which mark the end of immunoglobulin gene maturation in germinal centers of secondary lymph nodes. These two events rely on the activity of activation-induced cytidine deaminase (AID) which requires DNA double strand breaks be created, a potential danger to the cell. Applying 3D-fluorescence in situ hybridization coupled with immunofluorescence staining to a previously described experimental system recapitulating normal B-cell differentiation ex vivo, we have kinetically analyzed the radial positioning of the two IGH gene loci as well as their proximity with the nucleolus, heterochromatin and ÎłH2AX foci. Our observations are consistent with the proposal that these IGH gene rearrangements take place in a specific perinucleolar "recombination compartment" where AID could be sequestered thus limiting the extent of its potentially deleterious off-target effects

    DNA Aptamers for the Characterization of Histological Structure of Lung Adenocarcinoma

    No full text
    Nucleic acid aptamers are becoming popular as molecular probes for identification and imaging pathology and, at the same time, as a convenient platform for targeted therapy. Recent studies have shown that aptamers may be effectively used for tumor characterization and as commercially available monoclonal antibodies. Here we present three DNA aptamers binding to whole transformed lung cancer tissues, including tumor cells, connective tissues, and blood vessels. Protein targets have been revealed using affinity purification followed by mass spectrometry analyses, and they have been validated using a panel of correspondent antibodies and 3D imaging of tumor tissues. Each of the proteins targeted by the aptamers is involved in cancer progression and most of them are crucial for lung adenocarcinoma. We propose the use of these aptamers in aptahistochemistry for the characterization of the histological structure of lung adenocarcinoma. The value of the presented aptamers is their application together or separately for indicating the spread of neoplastic transformation, for complex differential diagnostics, and for targeted therapy of the tumor itself as well as all transformed structures of the adjacent tissues. Moreover, it has been demonstrated that these aptamers could be used for intraoperative tumor visualization and margin assessment. Keywords: DNA-aptamer, lung adenocarcinoma, histological structur

    Ecological and conceptual consequences of Arctic pollution

    No full text
    Although the effect of pollution on forest health and decline received much attention in the 1980s, it has not been considered to explain the ‘Divergence Problem’ in dendroclimatology; a decoupling of tree growth from rising air temperatures since the 1970s. Here we use physical and biogeochemical measurements of hundreds of living and dead conifers to reconstruct the impact of heavy industrialisation around Norilsk in northern Siberia. Moreover, we develop a forward model with surface irradiance forcing to quantify long‐distance effects of anthropogenic emissions on the functioning and productivity of Siberia’s taiga. Downwind from the world’s most polluted Arctic region, tree mortality rates of up to 100% have destroyed 24,000 km2 boreal forest since the 1960s, coincident with dramatic increases in atmospheric sulphur, copper, and nickel concentrations. In addition to regional ecosystem devastation, we demonstrate how ‘Arctic Dimming’ can explain the circumpolar ‘Divergence Problem’, and discuss implications on the terrestrial carbon cycle.ISSN:1461-023XISSN:1461-024
    corecore