15 research outputs found

    Evaluation of the spatial patterns and risk factors, including backyard pigs, for classical swine fever occurrence in Bulgaria using a Bayesian model

    Get PDF
    The spatial pattern and epidemiology of backyard pig farming and other low bio-security pig production systems and their role in the occurrence of classical swine fever (CSF) is described and evaluated. A spatial Bayesian model was used to explore the risk factors, including human demographics, socioeconomic and environmental factors. The analyses were performed for Bulgaria, which has a large number of backyard farms (96% of all pig farms in the country are classified as backyard farms), and it is one of the countries for which both backyard pig and farm counts were available. Results reveal that the high-risk areas are typically concentrated in areas with small family farms, high numbers of outgoing pig shipments and low levels of personal consumption (i.e. economically deprived areas). Identification of risk factors and high-risk areas for CSF will allow to targeting risk-based surveillance strategies leading to prevention, control and, ultimately, elimination of the disease in Bulgaria and other countries with similar socio-epidemiological condition

    Prediction of pig trade movements in different European production systems with exponential random graph models

    Get PDF
    In most European countries, data regarding movements of live animals are routinely collected and can greatly aid predictive epidemic modeling. However, the use of complete movements' dataset to conduct policy-relevant predictions has been so far limited by the massive amount of data that have to be processed (e.g., in intensive commercial systems) or the restricted availability of timely and updated records on animal movements (e.g., in areas where small-scale or extensive production is predominant). The aim of this study was to use exponential random graph models (ERGMs) to reproduce, understand, and predict pig trade networks in different European production systems. Three trade networks were built by aggregating movements of pig batches among premises (farms and trade operators) over 2011 in Bulgaria, Extremadura (Spain), and Côtes-d'Armor (France), where small-scale, extensive, and intensive pig production are predominant, respectively. Three ERGMs were fitted to each network with various demographic and geographic attributes of the nodes as well as six internal network configurations. Several statistical and graphical diagnostic methods were applied to assess the goodness of fit of the models. For all systems, both exogenous (attribute-based) and endogenous (network-based) processes appeared to govern the structure of pig trade network, and neither alone were capable of capturing all aspects of the network structure. Geographic mixing patterns strongly structured pig trade organization in the small-scale production system, whereas belonging to the same company or keeping pigs in the same housing system appeared to be key drivers of pig trade, in intensive and extensive production systems, respectively. Heterogeneous mixing between types of production also explained a part of network structure, whichever production system considered. Limited information is thus needed to capture most of the global structure of pig trade networks. Such findings will be useful to simplify trade networks analysis and better inform European policy makers on risk-based and more cost-effective prevention and control against swine diseases such as African swine fever, classical swine fever, or porcine reproductive and respiratory syndrome

    Reemergence of Human and Animal Brucellosis, Bulgaria

    Get PDF
    Bulgaria had been free from brucellosis since 1958, but during 2005–2007, a reemergence of human and animal disease was recorded. The reemergence of this zoonosis in the country highlights the importance of maintaining an active surveillance system for infectious diseases that will require full cooperation between public health and veterinary authorities

    Evaluation of the spatial patterns and risk factors, including backyard pigs, for classical swine fever occurrence in Bulgaria using a Bayesian model

    Get PDF
    The spatial pattern and epidemiology of backyard pig farming and other low bio-security pig production systems and their role in the occurrence of classical swine fever (CSF) is described and evaluated. A spatial Bayesian model was used to explore the risk factors, including human demographics, socioeconomic and environmental factors. The analyses were performed for Bulgaria, which has a large number of backyard farms (96% of all pig farms in the country are classified as backyard farms), and it is one of the countries for which both backyard pig and farm counts were available. Results reveal that the high-risk areas are typically concentrated in areas with small family farms, high numbers of outgoing pig shipments and low levels of personal consumption (i.e. economically deprived areas). Identification of risk factors and high-risk areas for CSF will allow to targeting risk-based surveillance strategies leading to prevention, control and, ultimately, elimination of the disease in Bulgaria and other countries with similar socio-epidemiological conditions

    Reconstruction of the Transmission History of RNA Virus Outbreaks Using Full Genome Sequences: Foot-and-Mouth Disease Virus in Bulgaria in 2011

    Get PDF
    <div><p>Improvements to sequencing protocols and the development of computational phylogenetics have opened up opportunities to study the rapid evolution of RNA viruses in real time. In practical terms, these results can be combined with field data in order to reconstruct spatiotemporal scenarios that describe the origin and transmission pathways of viruses during an epidemic. In the case of notifiable diseases, such as foot-and-mouth disease (FMD), these analyses provide important insights into the epidemiology of field outbreaks that can support disease control programmes. This study reconstructs the origin and transmission history of the FMD outbreaks which occurred during 2011 in Burgas Province, Bulgaria, a country that had been previously FMD-free-without-vaccination since 1996. Nineteen full genome sequences (FGS) of FMD virus (FMDV) were generated and analysed, including eight representative viruses from all of the virus-positive outbreaks of the disease in the country and 11 closely-related contemporary viruses from countries in the region where FMD is endemic (Turkey and Israel). All Bulgarian sequences shared a single putative common ancestor which was closely related to the index case identified in wild boar. The closest relative from outside of Bulgaria was a FMDV collected during 2010 in Bursa (Anatolia, Turkey). Within Bulgaria, two discrete genetic clusters were detected that corresponded to two episodes of outbreaks that occurred during January and March-April 2011. The number of nucleotide substitutions that were present between, and within, these separate clusters provided evidence that undetected FMDV infection had occurred. These conclusions are supported by laboratory data that subsequently identified three additional FMDV-infected livestock premises by serosurveillance, as well as a number of antibody positive wild boar on both sides of the border with Turkish Thrace. This study highlights how FGS analysis can be used as an effective on-the-spot tool to support and help direct epidemiological investigations of field outbreaks.</p> </div

    Development of anti-Crimean-Congo hemorrhagic fever virus Gc and NP-specific ELISA for detection of antibodies in domestic animal sera.

    Get PDF
    Crimean-Congo hemorrhagic fever (CCHF) is a priority emerging disease. CCHF, caused by the CCHF virus (CCHFV), can lead to hemorrhagic fever in humans with severe cases often having fatal outcomes. CCHFV is maintained within a tick-vertebrate-tick cycle, which includes domestic animals. Domestic animals infected with CCHFV do not show clinical signs of the disease and the presence of antibodies in the serum can provide evidence of their exposure to the virus. Current serological tests are specific to either one CCHFV antigen or the whole virus antigen. Here, we present the development of two in-house ELISAs for the detection of serum IgG that is specific for two different CCHFV antigens: glycoprotein Gc (CCHFV Gc) and nucleoprotein (CCHFV NP). We demonstrate that these two assays were able to detect anti-CCHFV Gc-specific and anti-CCHFV NP-specific IgG in sheep from endemic CCHFV areas with high specificity, providing new insight into the heterogeneity of the immune response induced by natural infection with CCHFV in domestic animals

    Evaluation of the risk of classical swine fever (CSF) spread from backyard pigs to other domestic pigs by using the spatial stochastic disease spread model Be-FAST: The example of Bulgaria

    No full text
    The study presented here is one of the very first aimed at exploring the potential spread of classical swine fever (CSF)from backyard pigs to other domestic pigs. Specifically, we used a spatial stochastic spread model, called Be-FAST, to evaluate the potential spread of CSF virus (CSFV) in Bulgaria, which holds a large number of backyards (96% of the total number of pig farms) and is one of the very few countries for which backyard pigs and farm counts are available. The model revealed that, despite backyard pigs being very likely to become infected, infections from backyard pigs to other domestic pigs were rare. In general, the magnitude and duration of the CSF simulated epidemics were small, with a median [95% PI] number of infected farms per epidemic of 1 [1,4] and a median [95% PI] duration of the epidemic of 44 [17,101] days. CSFV transmission occurs primarily (81.16%) due to indirect contacts (i.e. vehicles, people and local spread) whereas detection of infected premises was mainly (69%) associated with the observation of clinical signs on farm rather than with implementation of tracing or zoning. Methods and results of this study may support the implementation of risk-based strategies more cost-effectively to prevent, control and, ultimately, eradicate CSF from Bulgaria. The model may also be easily adapted to other countries in which the backyard system is predominant. It can also be used to simulate other similar diseases such as African swine feve

    Statistical parsimony trees as implemented by TCS using the full genomes of 19 sequenced FMDVs.

    No full text
    <p><b>A</b>. Edited TCS tree in which putative virus ancestors (○), except those corresponding to nodes, were removed. The length of the branches is directly proportional to the number of nucleotide (nt) changes. The vertical axis represents a time scale which denotes the date when the viruses were collected. <b>B</b>. Detailed TCS tree showing the viruses corresponding to the Bulgarian outbreaks and their closest ancestor within the Middle East. Open circles and lines correspond to putative genetic intermediates separated by single nt changes. Putative common (red circle) and secondary ancestors for each wave are shaded (blue circle, first; green circle, second). Lines in bold correspond to non-synonymous changes. The square shows the number of nt versus non-synonymous changes. The specific amino-acid changes are indicated, as well as the viral proteins involved. Non-conservative amino-acid substitutions (according to GONNET matrix, as implemented in BioEdit software) are highlighted in bold.</p

    Nucleotide and amino acid substitutions occurring along the genome of the FMDV sequences.

    No full text
    <p><b>A</b>) Data for sequences from Bulgaria (8 genomes): graphs represent the distribution of total nucleotide (nt) (black line) and non-synonymous (red) substitutions across the different genomic regions of FMDV (shown below). The pie chart and the bar chart show percentage of nt substitutions for each region, and nt variability within the region, respectively. <b>B</b>) Similar analysis to <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0049650#pone-0049650-g002" target="_blank">figure 2A</a>) undertaken for the 11 FMDVs genomes from Turkey and Israel.</p

    Summary of the FMDV outbreaks which occurred in Burgas, Bulgaria, 2011.

    No full text
    <p>W = Wild boar; C = Cattle; S = Sheep; G = Goat; P = Pig; B = Buffalo; U = Unobserved (FMDV-seropositive-only holding);</p>a<p>1a Seropositive free range pigs (lesions) and cattle; 1b Village with seropositive sheep, goats and pigs; 1c Virus positive Hereford cattle.</p>b<p>Partial sampling.</p>c<p>Clinical signs seen in sheep at culling.</p
    corecore