3,803 research outputs found
Hamiltonian Analysis of non-chiral Plebanski Theory and its Generalizations
We consider non-chiral, full Lorentz group-based Plebanski formulation of
general relativity in its version that utilizes the Lagrange multiplier field
Phi with "internal" indices. The Hamiltonian analysis of this version of the
theory turns out to be simpler than in the previously considered in the
literature version with Phi carrying spacetime indices. We then extend the
Hamiltonian analysis to a more general class of theories whose action contains
scalars invariants constructed from Phi. Such theories have recently been
considered in the context of unification of gravity with other forces. We show
that these more general theories have six additional propagating degrees of
freedom as compared to general relativity, something that has not been
appreciated in the literature treating them as being not much different from
GR.Comment: 10 page
High Temperature Superconductivity: the explanation
Soon after the discovery of the first high temperature superconductor by
Georg Bednorz and Alex Mueller in 1986 the late Sir Nevill Mott answering his
own question "Is there an explanation?" [Nature v 327 (1987) 185] expressed a
view that the Bose-Einstein condensation (BEC) of small bipolarons, predicted
by us in 1981, could be the one. Several authors then contemplated BEC of real
space tightly bound pairs, but with a purely electronic mechanism of pairing
rather than with the electron-phonon interaction (EPI). However, a number of
other researchers criticized the bipolaron (or any real-space pairing) scenario
as incompatible with some angle-resolved photoemission spectra (ARPES), with
experimentally determined effective masses of carriers and unconventional
symmetry of the superconducting order parameter in cuprates. Since then the
controversial issue of whether the electron-phonon interaction (EPI) is crucial
for high-temperature superconductivity or weak and inessential has been one of
the most challenging problems of contemporary condensed matter physics. Here I
outline some developments in the bipolaron theory suggesting that the true
origin of high-temperature superconductivity is found in a proper combination
of strong electron-electron correlations with a significant finite-range
(Froehlich) EPI, and that the theory is fully compatible with the key
experiments.Comment: 8 pages, 2 figures, invited comment to Physica Script
Unconventional superconducting pairing by conventional phonons
The common wisdom that the phonon mechanism of electron pairing in the
weak-coupling Bardeen-Cooper-Schrieffer (BCS) superconductors leads to
conventional s-wave Cooper pairs is revised. An inevitable anisotropy of sound
velocity in crystals makes the phonon-mediated attraction of electrons
non-local in space providing unconventional Cooper pairs with a nonzero orbital
momentum in a wide range of electron densities. As a result of this anisotropy
quasi-two dimensional charge carriers undergo a quantum phase transition from
an unconventional d-wave superconducting state to a conventional s-wave
superconductor with more carriers per unit cell. In the opposite
strong-coupling regime rotational symmetry breaking appears as a result of a
reduced Coulomb repulsion between unconventional bipolarons dismissing thereby
some constraints on unconventional pairing in the Bose-Einstein condensation
(BEC) limit. The conventional phonons, and not superexchange, are shown to be
responsible for the d-wave symmetry of cuprate superconductors, where the
on-site Coulomb repulsion is large.Comment: 4 pages, 4 figures, more references adde
Vortex matter in the charged Bose liquid at absolute zero
The Gross-Pitaevskii-type equation is solved for the charge Bose liquid in
the external magnetic field at zero temperature. There is a vortex lattice with
locally broken charge neutrality. The boson density is modulated in real space
and each vortex is charged. Remarkably, there is no upper critical field at
zero temperature, so the density of single flux-quantum vortices monotonously
increases with the magnetic field up to B=infinity and no indication of a phase
transition. The size of each vortex core decreases as about 1/sqrt(B) keeping
the system globally charge neutral. If bosons are composed of two fermions, a
phase transition to a spin-polarized Fermi liquid at some magnetic field larger
than the pair-breaking field is predicted.Comment: 4 pages, 4 figures, references update
Superlight small bipolarons from realistic long-range Coulomb and Fr\"ohlich interactions
We report analytical and numerical results on the two-particle states of the
polaronic t-Jp model derived recently with realistic Coulomb and
electron-phonon (Frohlich) interactions in doped polar insulators. Eigenstates
and eigenvalues are calculated for two different geometries. Our results show
that the ground state is a bipolaronic singlet, made up of two polarons. The
bipolaron size increases with increasing ratio of the polaron hopping integral
t to the exchange interaction Jp but remains small compared to the system size
in the whole range 0<t/Jp<1. Furthermore, the model exhibits a phase transition
to a superconducting state with a critical temperature well in excess of 100K.
In the range t/Jp<1, there are distinct charge and spin gaps opening in the
density of states, specific heat, and magnetic susceptibility well above Tc.Comment: Calculation section and discussion of gap have been updated. Revised
calculations now enhance the predicted T_c in our model to over 200 K at
large hoppin
Coherent `ab' and `c' transport theory of high- cuprates
We propose a microscopic theory of the `'-axis and in-plane transport of
copper oxides based on the bipolaron theory and the Boltzmann kinetics. The
fundamental relationship between the anisotropy and the spin susceptibility is
derived, . The
temperature and doping dependence of the in-plane, and
out-of-plane, resistivity and the spin susceptibility,
are found in a remarkable agreement with the experimental data in underdoped,
optimally and overdoped for the entire temperature
regime from up to . The normal state gap is explained and its
doping and temperature dependence is clarified.Comment: 12 pages, Latex, 3 figures available upon reques
Parameter-free expression for superconducting Tc in cuprates
A parameter-free expression for the superconducting critical temperature of
layered cuprates is derived which allows us to express Tc in terms of
experimentally measured parameters. It yields Tc values observed in about 30
lanthanum, yttrium and mercury-based samples for different levels of doping.
This remarkable agreement with the experiment as well as the unusual critical
behaviour and the normal-state gap indicate that many cuprates are close to the
Bose-Einstein condensation regime.Comment: 5 pages, 2 figures. Will be published in Physical Review
Bipolarons in the Extended Holstein Hubbard Model
We numerically and analytically calculate the properties of the bipolaron in
an extended Hubbard Holstein model, which has a longer range electron-phonon
coupling like the Fr\" ohlich model. In the strong coupling regime, the
effective mass of the bipolaron in the extended model is much smaller than the
Holstein bipolaron mass. In contrast to the Holstein bipolaron, the bipolaron
in the extended model has a lower binding energy and remains bound with
substantial binding energy even in the large-U limit. In comparison with the
Holstein model where only a singlet bipolaron is bound, in the extended
Holstein model a triplet bipolaron can also form a bound state. We discuss the
possibility of phase separation in the case of finite electron doping.Comment: 5 pages, 3 figure
- …