3,803 research outputs found

    Hamiltonian Analysis of non-chiral Plebanski Theory and its Generalizations

    Full text link
    We consider non-chiral, full Lorentz group-based Plebanski formulation of general relativity in its version that utilizes the Lagrange multiplier field Phi with "internal" indices. The Hamiltonian analysis of this version of the theory turns out to be simpler than in the previously considered in the literature version with Phi carrying spacetime indices. We then extend the Hamiltonian analysis to a more general class of theories whose action contains scalars invariants constructed from Phi. Such theories have recently been considered in the context of unification of gravity with other forces. We show that these more general theories have six additional propagating degrees of freedom as compared to general relativity, something that has not been appreciated in the literature treating them as being not much different from GR.Comment: 10 page

    High Temperature Superconductivity: the explanation

    Full text link
    Soon after the discovery of the first high temperature superconductor by Georg Bednorz and Alex Mueller in 1986 the late Sir Nevill Mott answering his own question "Is there an explanation?" [Nature v 327 (1987) 185] expressed a view that the Bose-Einstein condensation (BEC) of small bipolarons, predicted by us in 1981, could be the one. Several authors then contemplated BEC of real space tightly bound pairs, but with a purely electronic mechanism of pairing rather than with the electron-phonon interaction (EPI). However, a number of other researchers criticized the bipolaron (or any real-space pairing) scenario as incompatible with some angle-resolved photoemission spectra (ARPES), with experimentally determined effective masses of carriers and unconventional symmetry of the superconducting order parameter in cuprates. Since then the controversial issue of whether the electron-phonon interaction (EPI) is crucial for high-temperature superconductivity or weak and inessential has been one of the most challenging problems of contemporary condensed matter physics. Here I outline some developments in the bipolaron theory suggesting that the true origin of high-temperature superconductivity is found in a proper combination of strong electron-electron correlations with a significant finite-range (Froehlich) EPI, and that the theory is fully compatible with the key experiments.Comment: 8 pages, 2 figures, invited comment to Physica Script

    Unconventional superconducting pairing by conventional phonons

    Full text link
    The common wisdom that the phonon mechanism of electron pairing in the weak-coupling Bardeen-Cooper-Schrieffer (BCS) superconductors leads to conventional s-wave Cooper pairs is revised. An inevitable anisotropy of sound velocity in crystals makes the phonon-mediated attraction of electrons non-local in space providing unconventional Cooper pairs with a nonzero orbital momentum in a wide range of electron densities. As a result of this anisotropy quasi-two dimensional charge carriers undergo a quantum phase transition from an unconventional d-wave superconducting state to a conventional s-wave superconductor with more carriers per unit cell. In the opposite strong-coupling regime rotational symmetry breaking appears as a result of a reduced Coulomb repulsion between unconventional bipolarons dismissing thereby some constraints on unconventional pairing in the Bose-Einstein condensation (BEC) limit. The conventional phonons, and not superexchange, are shown to be responsible for the d-wave symmetry of cuprate superconductors, where the on-site Coulomb repulsion is large.Comment: 4 pages, 4 figures, more references adde

    Vortex matter in the charged Bose liquid at absolute zero

    Get PDF
    The Gross-Pitaevskii-type equation is solved for the charge Bose liquid in the external magnetic field at zero temperature. There is a vortex lattice with locally broken charge neutrality. The boson density is modulated in real space and each vortex is charged. Remarkably, there is no upper critical field at zero temperature, so the density of single flux-quantum vortices monotonously increases with the magnetic field up to B=infinity and no indication of a phase transition. The size of each vortex core decreases as about 1/sqrt(B) keeping the system globally charge neutral. If bosons are composed of two fermions, a phase transition to a spin-polarized Fermi liquid at some magnetic field larger than the pair-breaking field is predicted.Comment: 4 pages, 4 figures, references update

    Superlight small bipolarons from realistic long-range Coulomb and Fr\"ohlich interactions

    Get PDF
    We report analytical and numerical results on the two-particle states of the polaronic t-Jp model derived recently with realistic Coulomb and electron-phonon (Frohlich) interactions in doped polar insulators. Eigenstates and eigenvalues are calculated for two different geometries. Our results show that the ground state is a bipolaronic singlet, made up of two polarons. The bipolaron size increases with increasing ratio of the polaron hopping integral t to the exchange interaction Jp but remains small compared to the system size in the whole range 0<t/Jp<1. Furthermore, the model exhibits a phase transition to a superconducting state with a critical temperature well in excess of 100K. In the range t/Jp<1, there are distinct charge and spin gaps opening in the density of states, specific heat, and magnetic susceptibility well above Tc.Comment: Calculation section and discussion of gap have been updated. Revised calculations now enhance the predicted T_c in our model to over 200 K at large hoppin

    Coherent `ab' and `c' transport theory of high-TcT_{c} cuprates

    Full text link
    We propose a microscopic theory of the `cc'-axis and in-plane transport of copper oxides based on the bipolaron theory and the Boltzmann kinetics. The fundamental relationship between the anisotropy and the spin susceptibility is derived, ρc(T,x)/ρab(T,x)x/Tχs(T,x)\rho_{c}(T,x)/\rho_{ab}(T,x)\sim x/\sqrt{T}\chi_{s}(T,x). The temperature (T)(T) and doping (x)(x) dependence of the in-plane, ρab\rho_{ab} and out-of-plane, ρc\rho_{c} resistivity and the spin susceptibility, χs\chi_{s} are found in a remarkable agreement with the experimental data in underdoped, optimally and overdoped La2xSrxCuO4La_{2-x}Sr_{x}CuO_{4} for the entire temperature regime from TcT_{c} up to 800K800K. The normal state gap is explained and its doping and temperature dependence is clarified.Comment: 12 pages, Latex, 3 figures available upon reques

    Parameter-free expression for superconducting Tc in cuprates

    Get PDF
    A parameter-free expression for the superconducting critical temperature of layered cuprates is derived which allows us to express Tc in terms of experimentally measured parameters. It yields Tc values observed in about 30 lanthanum, yttrium and mercury-based samples for different levels of doping. This remarkable agreement with the experiment as well as the unusual critical behaviour and the normal-state gap indicate that many cuprates are close to the Bose-Einstein condensation regime.Comment: 5 pages, 2 figures. Will be published in Physical Review

    Bipolarons in the Extended Holstein Hubbard Model

    Full text link
    We numerically and analytically calculate the properties of the bipolaron in an extended Hubbard Holstein model, which has a longer range electron-phonon coupling like the Fr\" ohlich model. In the strong coupling regime, the effective mass of the bipolaron in the extended model is much smaller than the Holstein bipolaron mass. In contrast to the Holstein bipolaron, the bipolaron in the extended model has a lower binding energy and remains bound with substantial binding energy even in the large-U limit. In comparison with the Holstein model where only a singlet bipolaron is bound, in the extended Holstein model a triplet bipolaron can also form a bound state. We discuss the possibility of phase separation in the case of finite electron doping.Comment: 5 pages, 3 figure
    corecore