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We report analytical and numerical results on the two-particle states of the polaronic t-Jp model derived recently
with realistic Coulomb and electron-phonon (Fröhlich) interactions in doped polar insulators. Eigenstates and
eigenvalues are calculated for two different geometries. Our results show that the ground state is a bipolaronic
singlet, made up of two polarons. The bipolaron size increases with increasing ratio of the polaron hopping
integral t to the exchange interaction Jp but remains small in the whole range 0 � t/Jp � 1. Furthermore, the
model exhibits a phase transition to a superconducting state with a critical temperature well in excess of 100 K
since the small bipolarons are perfectly mobile. In the range t/Jp � 1, there are distinct charge and spin gaps
opening in the density of states, specific heat, and magnetic susceptibility well above Tc.
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With few exceptions,1 it is widely believed that the
conventional Bardeen-Cooper-Schrieffer (BCS) theory and its
intermediate-coupling Eliashberg extension2 do not suffice to
explain high-temperature superconductivity. On the contrary,
there is growing understanding that the true origin of high-
temperature superconductivity should be found in a proper
combination of the Coulomb repulsion with a significant
electron-phonon interaction (EPI).3 The many-body theory of
strongly correlated electrons and phonons was originally de-
veloped with the on-site Hubbard repulsion and the short-range
Holstein EPI using analytical strong-coupling expansion4 and
powerful numerical techniques5 in the framework of the
Hubbard-Holstein and Holstein–t-J models.6 Also the many-
body Coulomb-Fröhlich model, which takes into account a
finite range of realistic interactions, was proposed7 and studied
analytically8 and numerically,9 showing a rich phase diagram
with a polaronic Fermi-liquid, superconductivity induced by
mobile bipolarons and a charge-segregated phase. In these and
many other studies10 both interactions were introduced as input
parameters not directly related to the material.

Recently it has been shown that, in highly polarizable ionic
lattices, the bare long-range Coulomb and electron-phonon
interactions almost negate each other, giving rise to a physics
described by the polaronic t-Jp model11 with a short-range
polaronic spin-exchange Jp of phononic origin,

H ≡ −
∑
i,j

tij δσσ ′c
†
i cj + 2

∑
m�=n

Jp(m − n)

×
(

Sm · Sn + 1

4
nmnn

)
. (1)

Here the sum over n �= m counts each pair once only,
Sm = (1/2)

∑
σ,σ ′ c

†
mσ

−→τ σσ ′cmσ ′ is the spin 1
2 operator (−→τ

are the Pauli matrices), nm = ∑
σ c

†
i ci , and i = (m,σ ) and

j = (n,σ ′) include both site (m,n) and spin (σ,σ ′) indices; tij
is the polaron hopping integral while Jp(m − n) > t represents
the exchange interaction between polarons on different sites
from a residual polaron-multiphonon interaction. It has been
proposed that the t-Jp Hamiltonian, Eq. (1), has a high-T c

superconducting ground state protected from clustering.11

In this work we present numerical and analytical results
on the two-particle eigenstates of the polaronic t-Jp model as
the building blocks for high-temperature superconductivity.
It is worth noting that there is a wide difference between
(1) and the familiar t-J model12 derived from the repulsive
Hubbard U Hamiltonian in the limit U � t omitting the
so-called three-site hoppings and EPI. The latter model acts in
a projected Hilbert space constrained to no double occupancy.
On the contrary t-Jp Hamiltonian, Eq. (1) has no constraint
on the on-site occupancy since the on-site Coulomb repulsion
is negated by the Fröhlich EPI. The hopping integral tij leads
to the coherent (bi)polaron band while the antiferromagnetic
exchange Jp bounds polarons into superlight intersite bipo-
larons. Moreover, the sign “+” instead of “−” in the last
density-density interaction term in (1) provides an effective
repulsion between pairs, preventing their clustering,13 while
the repulsive t-J model favors a phase separation.

Also different from any model proposed so far is that all
quantities in the polaronic t-Jp Hamiltonian (1) are defined
through the material parameters, in particular tij = T (m −
n) exp[−g2(m − n)] with

g2(m) = 2πe2

κh̄ω0V

∑
q

1 − cos(q · m)

q2
(2)

and

Jp(m) = T 2(m)/2g2(m)h̄ω0, (3)

where κ = ε∞ε0/(ε0 − ε∞) and V is the normalization vol-
ume. Here the high-frequency ε∞ and the static ε0 dielectric
constants as well as the optical phonon frequency ω0 and the
bare hopping integrals in a rigid lattice T (m) are measured
and/or found using first-principle density functional theory14

in a parent polar insulator. Our Jp describes the spin exchange
of carriers doped into polar insulators as, for instance,
oxygen holes in the cuprates, rather than antiferromagnetic
correlations of copper spins in the parent insulator, which
are well described by the conventional J . The polaronic Jp

(on the order of a few hundred meV or more) is larger than
J ≈ 100 meV.
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FIG. 1. (Color online) Probability of finding two polarons on the
nearest-neighbor sites: Pbp (squares), on more distant sites (circles)
and on the same site (triangles) in the ground state of the t-Jp

Hamiltonian for chain (a) and zigzag ladder (b).

In the following we restrict the range of the exchange
interaction and the hopping to nearest neighbors. One can
readily find13 highly degenerate two-particle energy levels of
the model (1) for t = 0,

E0(t = 0) = −Jp, E1(t = 0) = 0, E2(t = 0) = Jp. (4)

The ground and the highest energy states are bipolaronic
spin-singlet and spin-triplet, respectively, made up of two
polarons on neighboring sites. The zero-energy states are
combinations of pairs of polarons separated by more than one
lattice parameter and on-site bipolarons, since there are no
on-site interaction terms in the Hamiltonian (1).

For t �= 0 there is a finite bandwidth associated with each
of the three energy levels. Exact diagonalization (ED) results
show that the ground-state configuration is virtually unchanged
since the distance between two bound polarons remains of the
order of the lattice spacing as long as t < Jp. In that range
in fact, regardless of the particular geometry, the probability
Pbp to find two polarons on nearest-neighbor sites decreases
gradually with increasing t/Jp and remains finite as shown in
Fig. 1.

We also show in Fig. 2 the ground-state energy as a function
of the t/Jp ratio for each analyzed geometry. Importantly,
fitting the ED results in the t 	 Jp range, there is a contribution
linear in t in the zigzag ladder where a single hopping

FIG. 2. (Color online) Two-particle ground-state energy E0 as a
function of the hopping. Symbols correspond to ED (squares and
triangles) and variational (crosses) data on finite clusters. We also
report (circles) the results at k = 0 obtained by diagonalizing Ĥ (k)
given in Eq. (6).

is sufficient for the coherent propagation of the intersite
bipolaron through the lattice.7 On the contrary, in the case
of a one-dimensional chain the bipolaron hopping is realized
through a second-order process, resulting in the quadratic
behavior of the ground-state energy as in the case of the on-site
bipolaron.4 As shown in Fig. 2, ED results are in excellent
agreement with the ones that can be obtained by means of the
variational method developed by Bonča et al.15

Beyond ED results, additional information on the two-
particle dynamics can be obtained by considering the following
two-particle singlet basis for an infinite lattice:

|m,k〉

=
⎧⎨
⎩

1√
2N

∑
n eik·(n+ m

2 )(c†n↑c
†
n+m↓ + c

†
n+m↑c

†
n↓)|0〉, m > 0

1√
N

∑
n eik·nc†n↑c

†
n↓|0〉, m = 0

.

(5)

For the analyzed one-dimensional geometries the matrix
representation of the t-Jp Hamiltonian in this basis is

Ĥ (k) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
√

2e1(k)
√

2e2(k) 0 . . .
√

2e1(k) −Jp + e2(k) e1(k) e2(k)
. . .

√
2e2(k) e1(k) e3 e1(k)

. . .

0 e2(k) e1(k) 0
. . .

...
. . .

. . .
. . .

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(6)

where e1(k) = −2t cos (ka/2) and e2(k) = e3 = 0 for the
chain while we have e1(k) = −2t cos (ka/4), e2(k) =
−2t cos (ka/2), and e3 = −Jp for the zigzag ladder.

The eigenvalues of the tridiagonal matrix Ĥ (k) determine
the energy dispersion E(k). In the limit t → 0, ei(k) → 0,
so that the ground-state energy is −Jp, in agreement with
the ED results showed so far. For any t > 0, the problem is
still solvable by requiring the system wave function to decay
exponentially in the region where the potential vanishes.13 In
the case of a chain, the energy dispersion can be derived from
a cubic equation that, in the t 	 Jp limit, gives

Es(k) = −Jp − (12t2/Jp) cos2(ka/2) + O(t4) (7)

with a quadratic contribution with respect to the hopping term.
On the contrary, in the same limit the corresponding dispersion
for the zigzag ladder16 has been found to be linear in t :

Es(k) = −Jp − t[cos(ka/2) +
√

1 + 4 cos4(ka/4)] + O(t2).

(8)

As shown in Fig. 2, the energy dispersions at k = 0 obtained
for the chain and the zigzag ladder are in perfect agreement
with ED and variational results on finite clusters in the whole
range 0 � t/Jp < 1.

These results allow for some insight into a possible
superconducting phase transition and pseudogap signatures
in the response functions of the model.

According to the Mermin-Wagner theorem,17 there should
be no phase transition at finite temperatures in one and two
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dimensions (1D and 2D) since there is no continuous symmetry
breaking. However, a finite temperature phase transition in
2D can exist via the Berezinsky-Kosterlitz-Thouless (BKT)
mechanism.18,19 For a hard-core 2D Bose gas, where the Bose-
Einstein condensation does not occur,20,21 a phase transition
to a superfluid state is expected.19 In particular, it has been
shown22 in the dilute limit ln ln(1/nbr

2) > 1 that the critical
temperature is

Tc = 2πh̄2nb/kBm∗∗ ln ln(1/nbr
2), (9)

where nb is the boson density per unit area and r is the range
of the boson-boson repulsion. In our case r ≈ a and m∗∗ is the
bipolaron mass.

To estimate the bipolaron effective mass for a 1D chain, one
can use our dispersion (7), which gives m∗∗ = h̄2Jp/6a2t2.
In the case of a zigzag ladder, taking into account only the
linear contribution in t/Jp results in an overestimated m∗∗

with m∗∗/m∗ ≈ 5 where m∗ = 2h̄2/5ta2 is the polaron mass.16

Numerical results obtained by solving the eigenvalue problem
of (6) show in fact that the ratio m∗∗/m∗ is below this estimate
(Fig. 3). In particular, for t ≈ Jp we have m∗∗ ≈ 2m∗ for both
chain and zigzag ladder geometries.

Since the effective mass is proportional to 1/t2 or 1/t ,
one may conclude that T c should increase as t or t2 with the
polaron hopping integral. On the other hand, our ED results,
Fig. 1, show that the probability Pbp(t/Jp) to find a hard-core
tightly bound singlet decreases as the hopping increases. At
sufficiently low density, BEC should not depend on whether
the bipolarons are nearest neighbor or next nearest neighbor,
so long as they are bound and the bipolaron spacing is much
greater than the typical polaron separation. On the other hand
when bipolarons overlap, their condensation appears in the
form of the Cooper pairs in the momentum space with a
lower critical temperature, rather than in real space (BEC-BCS
crossover4). Hence, bounds for the critical temperature can
be estimated by weighting Eq. (9) with P = Pbp(t/Jp) as
T r

c ≈ Pbp(t/Jp)Tc. As shown in Fig. 3, despite the low carrier
density, the critical temperature is about 200 K with the chain
and the zigzag ladder effective mass. In particular, T r

c obtained
for the chain should not be considered as strictly related to the
geometry but to the values of m∗∗ that could be a crude (but

FIG. 3. (Color online) Ratio of bipolaron to polaron mass (left
panel) in the t-Jp model for different lattices and the resulting
critical temperature (right panel) estimated with this mass at nb =
0.01/a2 and Jp = 1.0 eV. For the zigzag ladder we report both
the results obtained by using the linear-t dispersion11 (dashed line)
and the complete one (squares) calculated numerically from (6) by
diagonalizing Ĥ (k).

quite reliable) estimation of the bipolaron effective mass for
a 2D lattice in the low-density limit. In the case of cuprate
superconductors with the polaron binding energy in the range
0.5 eV � Ep � 1.0 eV and 0.3 eV � Jp � 1.0 eV (Ref. 11)
one gets the realistic value of the bare hopping integral
0.2 eV � T (a) � 0.4 eV that gives 0.05 � t/Jp � 0.27 and
the critical temperature 20 K � Tc � 100 K at nb = 0.01.

Let us finally analyze the (pseudo)gap features in the
density of states (DOS) and the spin susceptibility χs of
the polaronic t-Jp model at high temperatures well above
T r

c , when all carriers are nondegenerate. It is convenient
to introduce the “occupation density of states” (ODOS),
ρ(ω,T ), by weighting the standard temperature-independent
DOS with the Fermi-Dirac and the Bose-Einstein distribution
functions,

ρ(ω,T ) ≡ fs(ω,T )Ns(ω) + 2fp(ω,T )Np(ω), (10)

where

Ns,p(ω) = a

2π

∫ π/a

−π/a

dkδ[ω − Es,p(k)], (11)

and fs,p(ω,T ) = [exp ((ω − μs,p)/kBT ) ∓ 1]−1. Here Es,p(k)
is the (bi)polaron dispersion and μs = 2μ, μp = μ are
the chemical potentials of bipolarons and single polarons,
respectively, with μ < Es(0)/2.

In the t = 0 limit, according to (4) we have three different
two-particle energy levels with Es(k) and Ep(k) separated
by Jp. However, at low carrier density and temperature, the
highest energy level does not contribute to ODOS and we
observe two sharp peaks at ω/Jp = −1 and ω/Jp = 0.0 with
a suppression of ODOS around ω/Jp = −0.5. Hence there is
a single charge/spin pseudogap, �c = �s = Jp. The ODOS
for finite values of t/Jp and temperatures is shown in Fig. 4
with some Gaussian broadening in the δ function in Eq. (11),
modeling for instance disorder effects. At any t �= 0, the two
peaks become wider as t/Jp increases and the gap between
the bipolaron and the unpaired polaron bands gradually closes.
With increasing temperature the single-particle polaron band is
more populated along with the increasing population of higher
energy levels in the bipolaron band, so that ODOS reflects a
competition between bound and unbound states in the response
functions. In particular, the behavior of the spin susceptibility
indicates the presence of a finite spin-gap �s that decreases
gradually as t becomes comparable with the binding energy

FIG. 4. (Color online) Signatures of a pseudogap opening in
ODOS for different values of the polaron hopping (left panel) and
temperature (right panel) calculated for the chain with a Gaussian
broadening δ = 0.01Jp , modeling a disorder effect in the δ function
in Eq. (11).
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Jp,13 coherently with the suppression of the probability to find
a bipolaron in the nearest-neighbor configuration (Fig. 1). With
increasing temperature, the number of occupied states within
the pseudogap also increases. Without many-body correlation
effects (i.e., a screening of the Coulomb and electron-phonon
interactions at finite carrier densities23), the pseudogap itself
does not depend on temperature; it is a matter of whether
the temperature is high enough for single-polaron states to
have significant occupation. Hence a characteristic pseudogap
temperature T ∗ exists in our model above which the pseudogap
is suppressed, but it is a crossover temperature rather than a
critical temperature. Further signatures of pseudogap opening
are also found in the specific heat13 where the Schottky
anomaly is induced by thermal excitation within the bipo-
laronic and the polaronic bands.

In conclusion, we have described some key features of the
t-Jp Hamiltonian in the low-density limit. We have shown
that the ground-state configuration is a small bipolaron singlet.
Depending on the competition between the hopping t and the

polaronic exchange interaction Jp, the bipolaron size changes
but remains small in the whole range 0 � t/Jp � 1. We have
also argued that, in the 2D case, the presence of small light
bipolarons results in a phase transition to a superconducting
state at a critical temperature in excess of a hundred degrees
Kelvin. Finally, the spin susceptibility and the specific heat
of the model revealed charge and spin gaps. Because of the
presence of a continuum spectrum, there is no true ground-state
gap at any finite value of the polaron hopping t . However,
strong evidence of a finite pseudogap has been found in the
range where t < Jp above Tc.
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