15 research outputs found

    Inhibition of Glycolysis Impairs Retinoic Acid-Inducible Gene I–Mediated Antiviral Responses in Primary Human Dendritic Cells

    Get PDF
    Dendritic cells (DCs) are important mediators of the induction and regulation of adaptive immune responses following microbial infection and inflammation. Sensing environmental danger signals including viruses, microbial products, or inflammatory stimuli by DCs leads to the rapid transition from a resting state to an activated mature state. DC maturation involves enhanced capturing and processing of antigens for presentation by major histocompatibility complex (MHC) class I and class II, upregulation of chemokines and their receptors, cytokines and costimulatory molecules, and migration to lymphoid tissues where they prime naive T cells. Orchestrating a cellular response to environmental threats requires a high bioenergetic cost that accompanies the metabolic reprogramming of DCs during activation. We previously demonstrated that DCs undergo a striking functional transition after stimulation of the retinoic acid-inducible gene I (RIG-I) pathway with a synthetic 5′ triphosphate containing RNA (termed M8), consisting of the upregulation of interferon (IFN)–stimulated antiviral genes, increased DC phagocytosis, activation of a proinflammatory phenotype, and induction of markers associated with immunogenic cell death. In the present study, we set out to determine the metabolic changes associated with RIG-I stimulation by M8. The rate of glycolysis in primary human DCs was increased in response to RIG-I activation, and glycolytic reprogramming was an essential requirement for DC activation. Pharmacological inhibition of glycolysis in monocyte-derived dendritic cells (MoDCs) impaired type I IFN induction and signaling by disrupting the TBK1-IRF3-STAT1 axis, thereby countering the antiviral activity induced by M8. Functionally, the impaired IFN response resulted in enhanced viral replication of dengue, coronavirus 229E, and Coxsackie B5

    Time-Frequency Representation Of Autoionization Dynamics In Helium

    No full text
    Autoionization, which results from the interference between direct photoionization and photoexcitation to a discrete state decaying to the continuum by configuration interaction, is a well known example of the important role of electron correlation in light-matter interaction. Information on this process can be obtained by studying the spectral, or equivalently, temporal complex amplitude of the ionized electron wave packet. Using an energy-resolved interferometric technique, we measure the spectral amplitude and phase of autoionized wave packets emitted via the sp2+ and sp3+ resonances in helium. These measurements allow us to reconstruct the corresponding temporal profiles by Fourier transform. In addition, applying various time-frequency representations, we observe the build-up of the wave packets in the continuum, monitor the instantaneous frequencies emitted at any time and disentangle the dynamics of the direct and resonant ionization channels

    The global impact of the coronavirus pandemic

    No full text
    The coronavirus pandemic has engulfed the nations of the world for the first five months of 2020 and altered the pace, fabric and nature of our lives. In this overview accompanying the Special Issue of Cytokine & Growth Factor Reviews, we examine some of the many social and scientific issues impacted by SARS-CoV2 - personal lives, economy, scientific communication, the environment. International members of Istituto Pasteur in Rome and INITIATE, the Marie Curie Training Network reflect on the lasting global impact of the coronavirus pandemic.Medical Microbiolog

    Spin–orbit-resolved spectral phase measurements around a Fano resonance

    No full text
    International audienceWe apply a spectrally-resolved electron interferometry technique to the measurement of the spectral phase in the vicinity of the 3s13p64p Fano resonance of argon. We show that it allows disentangling the phases of the two nearly-overlapping electron wavepackets corresponding to different spin–orbit final states. Using simple assumptions, it is possible to process the experimental data and numerically isolate each component in a self-consistent manner. This in turn allows reconstructing the autoionization dynamics of the dominant channel
    corecore