5 research outputs found

    TRPC1 transcript variants, inefficient nonsense-mediated decay and low up-frameshift-1 in vascular smooth muscle cells

    No full text
    Background Transient Receptor Potential Canonical 1 (TRPC1) is a widely-expressed mammalian cationic channel with functional effects that include stimulation of cardiovascular remodelling. The initial aim of this study was to investigate variation in TRPC1-encoding gene transcripts. Results Extensive TRPC1 transcript alternative splicing was observed, with exons 2, 3 and 5-9 frequently omitted, leading to variants containing premature termination codons. Consistent with the predicted sensitivity of such variants to nonsense-mediated decay (NMD) the variants were increased by cycloheximide. However it was notable that control of the variants by NMD was prominent in human embryonic kidney 293 cells but not human vascular smooth muscle cells. The cellular difference was attributed in part to a critical protein in NMD, up-frameshift-1 (UPF1), which was found to have low abundance in the vascular cells. Rescue of UPF1 by expression of exogenous UPF1 was found to suppress vascular smooth muscle cell proliferation. Conclusions The data suggest: (i) extensive NMD-sensitive transcripts of TRPC1; (ii) inefficient clearance of aberrant transcripts and enhanced proliferation of vascular smooth muscle cells in part because of low UPF1 expression

    Pkd1-inactivation in vascular smooth muscle cells and adaptation to hypertension.

    No full text
    International audienceAutosomal dominant polycystic kidney disease (ADPKD) is a multisystem disorder characterized by renal, hepatic and pancreatic cyst formation and cardiovascular complications. The condition is caused by mutations in the PKD1 or PKD2 gene. In mice with reduced expression of Pkd1, dissecting aneurysms with prominent media thickening have been seen. To study the effect of selective disruption of Pkd1 in vascular smooth muscle cells (SMCs), we have generated mice in which a floxed part of the Pkd1 gene was deleted by Cre under the control of the SM22 promotor (SM22-Pkd1(del/del) mice). Cre activity was confirmed by X-gal staining using lacZ expressing Cre reporter mice (R26R), and quantitative PCR indicated that in the aorta Pkd1 gene expression was strongly reduced, whereas Pkd2 levels remained unaltered. Histopathological analysis revealed cyst formation in pancreas, liver and kidneys as the result of extravascular Cre activity in pancreatic ducts, bile ducts and in the glomerular Bowman's capsule. Remarkably, we did not find any spontaneous gross structural blood vessel abnormalities in mice with somatic Pkd1 gene disruption in SMCs or simultaneous disruption of Pkd1 in SMCs and endothelial cells (ECs). Extensive isometric myographic analysis of the aorta did not reveal differences in response to KCl, acetylcholine, phenylephrin or serotonin, except for a significant increase in contractility induced by phenylephrin on arteries from 40 weeks old Pkd1(del/+) germ-line mice. However, SM22-Pkd1(del/del) mice showed significantly reduced decrease in heart rate on angiotensin II-induced hypertension. The present findings further demonstrate in vivo, that adaptation to hypertension is altered in SM22-Pkd1(del/del) mice

    Sensing of lysophospholipids by TRPC5 calcium channel

    No full text
    Original article can be found at: http://www.jbc.org/ Copyright by The American Society for Biochemistry and Molecular Biology. DOI: 10.1074/jbc.M510301200 [Full text of this article is not available in the UHRA]TRPC calcium channels are emerging as a ubiquitous feature of vertebrate cells, but understanding of them is hampered by limited knowledge of the mechanisms of activation and identity of endogenous regulators. We have revealed that one of the TRPC channels, TRPC5, is strongly activated by common endogenous lysophospholipids including lysophosphatidylcholine (LPC) but, by contrast, not arachidonic acid. Although TRPC5 was stimulated by agonists at G-protein-coupled receptors, TRPC5 activation by LPC occurred downstream and independently of G-protein signaling. The effect was not due to the generation of reactive oxygen species or because of a detergent effect of LPC. LPC activated TRPC5 when applied to excised membrane patches and thus has a relatively direct action on the channel structure, either because of a phospholipid binding site on the channel or because of sensitivity of the channel to perturbation of the bilayer by certain lipids. Activation showed dependence on side-chain length and the chemical head-group. The data revealed a previously unrecognized lysophospholipid-sensing capability of TRPC5 that confers the property of a lipid ionotropic receptor.Peer reviewe
    corecore