18 research outputs found

    Clinimetrics of the Lanarkshire Oximetry Index for patients with leg ulcers: A systematic review and meta‐analysis

    Get PDF
    Ankle Brachial Pressure Index (ABPI) measurement has long been considered the gold standard of vascular assessment for people with lower limb ulceration. Despite this, only around 15% of patients in the United Kingdom who require an ABPI measurement undergo the assessment. The Lanarkshire Oximetry Index (LOI) is a cheaper and arguably more accessible approach to vascular assessment and was initially proposed as an alternative to the ABPI in 2000. No synthesis of evidence related to the LOI has been performed since its introduction into the literature. Primary studies were sought to determine the clinimetric properties of the LOI and its level of agreement with ABPI assessments. Systematic searches of MEDLINE, CINAHL, Cochrane Central Register of Controlled Trials, BNI, ProQuest Health and Medicine, Science Direct, Google Scholar and the British Library (online search) were conducted. Reference lists of identified studies were also reviewed to identify additional studies. Three primary studies met the inclusion criteria, reporting data from 307 patients and 584 limbs assessed using both the LOI and ABPI. All three studies reported fair to moderate kappa values for interrater reliability (Îș = 0.290–0.747) and statistically significant positive correlation coefficients (r = 0.37, p < 0.001 in two studies) between the LOI and ABPI. The combined data from the three studies indicated a sensitivity of 52% (41.78–62.1, 95% confidence interval [CI]) and specificity of 96.08% (93.4–97.9, 95% CI) for the LOI using the ABPI as a reference. Additional data are required to indicate the safety of the LOI in practice. Data are also required to determine if the LOI is more acceptable to clinicians compared to the ABPI and whether there are any barriers/enablers to its implementation in practice. Given the relatively low specificity of the LOI, it may be beneficial to combine measurement of the LOI with a subjective clinical risk assessment tool to improve the sensitivity of this alternative approach to vascular assessment

    Participant and workplace champion experiences of an intervention designed to reduce sitting time in desk-based workers : SMART work & life

    Get PDF
    Background: A cluster randomised controlled trial demonstrated the effectiveness of the SMART Work & Life (SWAL) behaviour change intervention, with and without a height-adjustable desk, for reducing sitting time in desk-based workers. Staff within organisations volunteered to be trained to facilitate delivery of the SWAL intervention and act as workplace champions. This paper presents the experiences of these champions on the training and intervention delivery, and from participants on their intervention participation. Methods: Quantitative and qualitative feedback from workplace champions on their training session was collected. Participants provided quantitative feedback via questionnaires at 3 and 12 month follow-up on the intervention strategies (education, group catch ups, sitting less challenges, self-monitoring and prompts, and the height-adjustable desk [SWAL plus desk group only]). Interviews and focus groups were also conducted at 12 month follow-up with workplace champions and participants respectively to gather more detailed feedback. Transcripts were uploaded to NVivo and the constant comparative approach informed the analysis of the interviews and focus groups. Results: Workplace champions rated the training highly with mean scores ranging from 5.3/6 to 5.7/6 for the eight parts. Most participants felt the education increased their awareness of the health consequences of high levels of sitting (SWAL: 90.7%; SWAL plus desk: 88.2%) and motivated them to change their sitting time (SWAL: 77.5%; SWAL plus desk: 85.77%). A high percentage of participants (70%) reported finding the group catch up session helpful and worthwhile. However, focus groups highlighted mixed responses to the group catch-up sessions, sitting less challenges and self-monitoring intervention components. Participants in the SWAL plus desk group felt that having a height-adjustable desk was key in changing their behaviour, with intrinsic as well as time based factors reported as key influences on the height-adjustable desk usage. In both intervention groups, participants reported a range of benefits from the intervention including more energy, less fatigue, an increase in focus, alertness, productivity and concentration as well as less musculoskeletal problems (SWAL plus desk group only). Work-related, interpersonal, personal attributes, physical office environment and physical barriers were identified as barriers when trying to sit less and move more. Conclusions: Workplace champion and participant feedback on the intervention was largely positive but it is clear that different behaviour change strategies worked for different people indicating that a ‘one size fits all’ approach may not be appropriate for this type of intervention. The SWAL intervention could be tested in a broader range of organisations following a few minor adaptations based on the champion and participant feedback. Trial registration: ISCRCTN registry (ISRCTN11618007)

    Participant and workplace champion experiences of an intervention designed to reduce sitting time in desk-based workers: SMART work & life

    Get PDF
    Background: A cluster randomised controlled trial demonstrated the effectiveness of the SMART Work & Life (SWAL) behaviour change intervention, with and without a height-adjustable desk, for reducing sitting time in desk-based workers. Staff within organisations volunteered to be trained to facilitate delivery of the SWAL intervention and act as workplace champions. This paper presents the experiences of these champions on the training and intervention delivery, and from participants on their intervention participation. Methods: Quantitative and qualitative feedback from workplace champions on their training session was collected. Participants provided quantitative feedback via questionnaires at 3 and 12 month follow-up on the intervention strategies (education, group catch ups, sitting less challenges, self-monitoring and prompts, and the height-adjustable desk [SWAL plus desk group only]). Interviews and focus groups were also conducted at 12 month follow-up with workplace champions and participants respectively to gather more detailed feedback. Transcripts were uploaded to NVivo and the constant comparative approach informed the analysis of the interviews and focus groups. Results: Workplace champions rated the training highly with mean scores ranging from 5.3/6 to 5.7/6 for the eight parts. Most participants felt the education increased their awareness of the health consequences of high levels of sitting (SWAL: 90.7%; SWAL plus desk: 88.2%) and motivated them to change their sitting time (SWAL: 77.5%; SWAL plus desk: 85.77%). A high percentage of participants (70%) reported finding the group catch up session helpful and worthwhile. However, focus groups highlighted mixed responses to the group catch-up sessions, sitting less challenges and self-monitoring intervention components. Participants in the SWAL plus desk group felt that having a height-adjustable desk was key in changing their behaviour, with intrinsic as well as time based factors reported as key influences on the height-adjustable desk usage. In both intervention groups, participants reported a range of benefits from the intervention including more energy, less fatigue, an increase in focus, alertness, productivity and concentration as well as less musculoskeletal problems (SWAL plus desk group only). Work-related, interpersonal, personal attributes, physical office environment and physical barriers were identified as barriers when trying to sit less and move more. Conclusions: Workplace champion and participant feedback on the intervention was largely positive but it is clear that different behaviour change strategies worked for different people indicating that a ‘one size fits all’ approach may not be appropriate for this type of intervention. The SWAL intervention could be tested in a broader range of organisations following a few minor adaptations based on the champion and participant feedback. Trial registration: ISCRCTN registry (ISRCTN11618007)

    A multicomponent intervention to reduce daily sitting time in office workers: the SMART Work & Life three-arm cluster RCT

    Get PDF
    Background: Office workers spend 70–85% of their time at work sitting. High levels of sitting have been linked to poor physiological and psychological health. Evidence shows the need for fully powered randomised controlled trials, with long-term follow-up, to test the effectiveness of interventions to reduce sitting time. Objective: Our objective was to test the clinical effectiveness and cost-effectiveness of the SMART Work & Life intervention, delivered with and without a height-adjustable workstation, compared with usual practice at 12-month follow-up. Design: A three-arm cluster randomised controlled trial. Setting: Councils in England. Participants: Office workers. Intervention: SMART Work & Life is a multicomponent intervention that includes behaviour change strategies, delivered by workplace champions. Clusters were randomised to (1) the SMART Work & Life intervention, (2) the SMART Work & Life intervention with a height-adjustable workstation (i.e. SMART Work & Life plus desk) or (3) a control group (i.e. usual practice). Outcome measures were assessed at baseline and at 3 and 12 months. Main outcome measures: The primary outcome was device-assessed daily sitting time compared with usual practice at 12 months. Secondary outcomes included sitting, standing, stepping time, physical activity, adiposity, blood pressure, biochemical measures, musculoskeletal issues, psychosocial variables, work-related health, diet and sleep. Cost-effectiveness and process evaluation data were collected. Results: A total of 78 clusters (756 participants) were randomised [control, 26 clusters (n = 267); SMART Work & Life only, 27 clusters (n = 249); SMART Work & Life plus desk, 25 clusters (n = 240)]. At 12 months, significant differences between groups were found in daily sitting time, with participants in the SMART Work & Life-only and SMART Work & Life plus desk arms sitting 22.2 minutes per day (97.5% confidence interval –38.8 to –5.7 minutes/day; p = 0.003) and 63.7 minutes per day (97.5% confidence interval –80.0 to –47.4 minutes/day; p < 0.001), respectively, less than the control group. Participants in the SMART Work & Life plus desk arm sat 41.7 minutes per day (95% confidence interval –56.3 to –27.0 minutes/day; p < 0.001) less than participants in the SMART Work & Life-only arm. Sitting time was largely replaced by standing time, and changes in daily behaviour were driven by changes during work hours on workdays. Behaviour changes observed at 12 months were similar to 3 months. At 12 months, small improvements were seen for stress, well-being and vigour in both intervention groups, and for pain in the lower extremity and social norms in the SMART Work & Life plus desk group. Results from the process evaluation supported these findings, with participants reporting feeling more energised, alert, focused and productive. The process evaluation also showed that participants viewed the intervention positively; however, the extent of engagement varied across clusters. The average cost of SMART Work & Life only and SMART Work & Life plus desk was £80.59 and £228.31 per participant, respectively. Within trial, SMART Work & Life only had an incremental cost-effectiveness ratio of £12,091 per quality-adjusted life-year, with SMART Work & Life plus desk being dominated. Over a lifetime, SMART Work & Life only and SMART Work & Life plus desk had incremental cost-effectiveness ratios of £4985 and £13,378 per quality-adjusted life-year, respectively. Limitations: The study was carried out in one sector, limiting generalisability. Conclusions: The SMART Work & Life intervention, provided with and without a height-adjustable workstation, was successful in changing sitting time. Future work: There is a need for longer-term follow-up, as well as follow-up within different organisations. Trial registration: Current Controlled Trials ISRCTN11618007

    A three arm cluster randomised controlled trial to test the effectiveness and cost-effectiveness of the SMART work & life intervention for reducing daily sitting time in office workers : study protocol

    Get PDF
    Background:Office-based workers typically spend 70-85% of working hours, and a large proportion of leisure time, sitting. High levels of sitting have been linked to poor health. There is a need for fully powered randomised controlled trials (RCTs) with long-term follow-up to test the effectiveness of interventions to reduce sitting. This paper describes the methodology of a three-arm cluster RCT designed to determine the effectiveness and cost-effectiveness of the SMART Work &amp; Life intervention, delivered with and without a height-adjustable desk, for reducing daily sitting. Methods/Design:A three-arm cluster RCT of 33 clusters (660 council workers) will be conducted in three areas in England (Leicester; Manchester; Liverpool). Office groups (clusters) will be randomised to the SMART Work &amp; Life intervention delivered with (group 1) or without (group 2) a height-adjustable desk or a control group (group 3). SMART Work &amp; Life includes organisational (e.g., management buy-in, provision/support for standing meetings), environmental (e.g., relocating waste bins, printers), and group/individual (education, action planning, goal setting, addressing barriers, coaching, self-monitoring, social support) level behaviour change strategies, with strategies driven by workplace champions. Baseline, 3, 12 and 24 month measures will be taken. Objectively measured daily sitting time (activPAL3). objectively measured sitting, standing, stepping, prolonged sitting and moderate-to-vigorous physical activity time and number of steps at work and daily; objectively measured sleep (wrist accelerometry). Adiposity, blood pressure, fasting glucose, glycated haemoglobin, cholesterol (total, HDL, LDL) and triglycerides will be assessed from capillary blood samples. Questionnaires will examine dietary intake, fatigue, musculoskeletal issues, job performance and satisfaction, work engagement, occupational and general fatigue, stress, presenteeism, anxiety and depression and sickness absence (organisational records). Quality of life and resources used (e.g. GP visits, outpatient attendances) will also be assessed. We will conduct a full process evaluation and cost-effectiveness analysis. Discussion:The results of this RCT will 1) help to understand how effective an important simple, yet relatively expensive environmental change is for reducing sitting, 2) provide evidence on changing behaviour across all waking hours, and 3) provide evidence for policy guidelines around population and workplace health and well-being. Trial registration: ISRCTN11618007 . Registered on 21 January 2018

    The burden of rheumatic disease

    No full text
    Musculoskeletal conditions are a major burden to the individual, society and the health service. Most new musculoskeletal GP consultations are for self-limiting conditions such as soft tissue rheumatism, chronic widespread pain and arthralgia. Incident cases of osteoarthritis are ten times more common compared to rheumatoid arthritis. The prevalence of musculoskeletal conditions is more common in women and tends to rise with age. Approximately one tenth of GP consultations are for diseases of the musculoskeletal system. It is likely that prevalence rates will continue to rise as life expectancy increases. This will in turn lead to an increase in health professional workloads and a further burden on healthcare services. Costs for musculoskeletal conditions include those to healthcare services, to society and indirect costs. A fifth of all incapacity claims in Great Britain are for diseases of the musculoskeletal system. Combined costs for rheumatoid arthritis patients amount to ÂŁ7000 per person affected per year, while each hip and knee replacement costs on average ÂŁ5000. Risk factors for musculoskeletal conditions include age and gender. The prevalence of certain musculoskeletal conditions can vary depending on ethnicity, lifestyle factors and genetic predisposition. The main consequences of having a musculoskeletal disease are chronic pain and disability. The burden of musculoskeletal conditions is high. The impact of these conditions on the health service and society will continue to rise alongside increasing life expectancy

    Defining Continuous Walking Events in Free-Living Environments: Mind the Gap

    No full text
    In free-living environments, continuous walking can be challenging to achieve without encountering interruptions, making it difficult to define a continuous walking event. While limited research has been conducted to define a continuous walking event that accounts for interruptions, no method has considered the intensity change caused by these interruptions, which is crucial for achieving the associated health outcomes. A sample of 24 staff members at the University of Salford were recruited. The participants wore an accelerometer-based device (activPAL&trade;) for seven days continuously and completed an activity diary, to explore a novel methodological approach of combining short interruptions of time between walking events based on an average walking cadence. The definition of moderate-to-vigorous physical activity (MVPA) used was a minimum walking cadence of either 76, 100, or 109 steps/min. The average daily time spent in MVPA increased from 75.2 &plusmn; 32.6 min to 86.5 &plusmn; 37.4 min using the 76 steps/min, 48.3 &plusmn; 29.5 min to 53.0 &plusmn; 33.3 min using the 100 steps/min threshold, and 31.4 &plusmn; 20.5 min to 33.9 &plusmn; 22.6 min using the 109 steps/min threshold; the difference before grouping and after grouping was statistically significant (p &lt; 0.001). This novel method will enable future analyses of the associations between continuous walking and health-related outcomes

    Physical Activity Assessed by Wrist and Thigh Worn Accelerometry and Associations with Cardiometabolic Health

    Get PDF
    Physical activity is increasingly being captured by accelerometers worn on different body locations. The aim of this study was to examine the associations between physical activity volume (average acceleration), intensity (intensity gradient) and cardiometabolic health when assessed by a thigh-worn and wrist-worn accelerometer. A sample of 659 office workers wore an Axivity AX3 on the non-dominant wrist and an activPAL3 micro on the right thigh concurrently for 24 h a day for 8 days. An average acceleration (proxy for physical activity volume) and intensity gradient (intensity distribution) were calculated from both devices using the open-source raw accelerometer processing software GGIR. Clustered cardiometabolic risk (CMR) was calculated using markers of cardiometabolic health, including waist circumference, triglycerides, HDL-cholesterol, mean arterial pressure and fasting glucose. Linear regression analysis assessed the associations between physical activity volume and intensity gradient with cardiometabolic health. Physical activity volume derived from the thigh-worn activPAL and the wrist-worn Axivity were beneficially associated with CMR and the majority of individual health markers, but associations only remained significant after adjusting for physical activity intensity in the thigh-worn activPAL. Physical activity intensity was associated with CMR score and individual health markers when derived from the wrist-worn Axivity, and these associations were independent of volume. Associations between cardiometabolic health and physical activity volume were similarly captured by the thigh-worn activPAL and the wrist-worn Axivity. However, only the wrist-worn Axivity captured aspects of the intensity distribution associated with cardiometabolic health. This may relate to the reduced range of accelerations detected by the thigh-worn activPAL

    Physical Activity Assessed by Wrist and Thigh Worn Accelerometry and Associations with Cardiometabolic Health

    No full text
    Physical activity is increasingly being captured by accelerometers worn on different body locations. The aim of this study was to examine the associations between physical activity volume (average acceleration), intensity (intensity gradient) and cardiometabolic health when assessed by a thigh-worn and wrist-worn accelerometer. A sample of 659 office workers wore an Axivity AX3 on the non-dominant wrist and an activPAL3 micro on the right thigh concurrently for 24 h a day for 8 days. An average acceleration (proxy for physical activity volume) and intensity gradient (intensity distribution) were calculated from both devices using the open-source raw accelerometer processing software GGIR. Clustered cardiometabolic risk (CMR) was calculated using markers of cardiometabolic health, including waist circumference, triglycerides, HDL-cholesterol, mean arterial pressure and fasting glucose. Linear regression analysis assessed the associations between physical activity volume and intensity gradient with cardiometabolic health. Physical activity volume derived from the thigh-worn activPAL and the wrist-worn Axivity were beneficially associated with CMR and the majority of individual health markers, but associations only remained significant after adjusting for physical activity intensity in the thigh-worn activPAL. Physical activity intensity was associated with CMR score and individual health markers when derived from the wrist-worn Axivity, and these associations were independent of volume. Associations between cardiometabolic health and physical activity volume were similarly captured by the thigh-worn activPAL and the wrist-worn Axivity. However, only the wrist-worn Axivity captured aspects of the intensity distribution associated with cardiometabolic health. This may relate to the reduced range of accelerations detected by the thigh-worn activPAL
    corecore