1,648 research outputs found
A "poor man's" approach for high-resolution three-dimensional topology optimization of natural convection problems
This paper treats topology optimization of natural convection problems. A
simplified model is suggested to describe the flow of an incompressible fluid
in steady state conditions, similar to Darcy's law for fluid flow in porous
media. The equations for the fluid flow are coupled to the thermal
convection-diffusion equation through the Boussinesq approximation. The coupled
non-linear system of equations is discretized with stabilized finite elements
and solved in a parallel framework that allows for the optimization of high
resolution three-dimensional problems. A density-based topology optimization
approach is used, where a two-material interpolation scheme is applied to both
the permeability and conductivity of the distributed material. Due to the
simplified model, the proposed methodology allows for a significant reduction
of the computational effort required in the optimization. At the same time, it
is significantly more accurate than even simpler models that rely on convection
boundary conditions based on Newton's law of cooling. The methodology discussed
herein is applied to the optimization-based design of three-dimensional heat
sinks. The final designs are formally compared with results of previous work
obtained from solving the full set of Navier-Stokes equations. The results are
compared in terms of performance of the optimized designs and computational
cost. The computational time is shown to be decreased to around 5-20% in terms
of core-hours, allowing for the possibility of generating an optimized design
during the workday on a small computational cluster and overnight on a high-end
desktop
A "poor man's" approach to topology optimization of natural convection problems
Topology optimization of natural convection problems is computationally
expensive, due to the large number of degrees of freedom (DOFs) in the model
and its two-way coupled nature. Herein, a method is presented to reduce the
computational effort by use of a reduced-order model governed by simplified
physics. The proposed method models the fluid flow using a potential flow
model, which introduces an additional fluid property. This material property
currently requires tuning of the model by comparison to numerical Navier-Stokes
based solutions. Topology optimization based on the reduced-order model is
shown to provide qualitatively similar designs, as those obtained using a full
Navier-Stokes based model. The number of DOFs is reduced by 50% in two
dimensions and the computational complexity is evaluated to be approximately
12.5% of the full model. We further compare to optimized designs obtained
utilizing Newton's convection law.Comment: Preprint version. Please refer to final version in Structural
Multidisciplinary Optimization https://doi.org/10.1007/s00158-019-02215-
Quantitative Assessment of the Risk of Release of Foot-and-Mouth Disease Virus via Export of Bull Semen from Israel
Various foot-and-mouth disease (FMD) virus strains circulate in the Middle East, causing frequent episodes of FMD outbreaks among Israeli livestock. Since the virus is highly resistant in semen, artificial insemination with contaminated bull semen may lead to the infection of the receiver cow. As a non-FMD-free country with vaccination, Israel is currently engaged in trading bull semen only with countries of the same status. The purpose of this study was to assess the risk of release of FMD virus through export of bull semen in order to estimate the risk for FMD-free countries considering purchasing Israeli bull semen. A stochastic risk assessment model was used to estimate this risk, defined as the annual likelihood of exporting at least one ejaculate of bull semen contaminated with viable FMD virus. A total of 45 scenarios were assessed to account for uncertainty and variability around specific parameter estimates and to evaluate the effect of various mitigation measures, such as performing a preexport test on semen ejaculates. Under the most plausible scenario, the annual likelihood of exporting bull semen contaminated with FMD virus had a median of 1.3 * 10(-7) for an export of 100 ejaculates per year. This corresponds to one infected ejaculate exported every 7 million years. Under the worst-case scenario, the median of the risk rose to 7.9 * 10(-5), which is equivalent to the export of one infected ejaculate every 12,000 years. Sensitivity analysis indicated that the most influential parameter is the probability of viral excretion in infected bulls
Topology optimisation of natural convection problems
This paper demonstrates the application of the density-based topology
optimisation approach for the design of heat sinks and micropumps based on
natural convection effects. The problems are modelled under the assumptions of
steady-state laminar flow using the incompressible Navier-Stokes equations
coupled to the convection-diffusion equation through the Boussinesq
approximation. In order to facilitate topology optimisation, the Brinkman
approach is taken to penalise velocities inside the solid domain and the
effective thermal conductivity is interpolated in order to accommodate
differences in thermal conductivity of the solid and fluid phases. The
governing equations are discretised using stabilised finite elements and
topology optimisation is performed for two different problems using discrete
adjoint sensitivity analysis. The study shows that topology optimisation is a
viable approach for designing heat sink geometries cooled by natural convection
and micropumps powered by natural convection.Comment: Submitted to the 'International Journal for Numerical Methods in
Fluids' on 28th of August 2013 - currently under revie
Industrial Application of Topology Optimization for Combined Conductive and Convective Heat Transfer Problems
TRIPPy: Trailed Image Photometry in Python
Photometry of moving sources typically suffers from reduced signal-to-noise
(SNR) or flux measurements biased to incorrect low values through the use of
circular apertures. To address this issue we present the software package,
TRIPPy: TRailed Image Photometry in Python. TRIPPy introduces the pill
aperture, which is the natural extension of the circular aperture appropriate
for linearly trailed sources. The pill shape is a rectangle with two
semicircular end-caps, and is described by three parameters, the trail length
and angle, and the radius. The TRIPPy software package also includes a new
technique to generate accurate model point-spread functions (PSF) and trailed
point-spread functions (TSF) from stationary background sources in sidereally
tracked images. The TSF is merely the convolution of the model PSF, which
consists of a moffat profile, and super sampled lookup table. From the TSF,
accurate pill aperture corrections can be estimated as a function of pill
radius with a accuracy of 10 millimags for highly trailed sources. Analogous to
the use of small circular apertures and associated aperture corrections, small
radius pill apertures can be used to preserve signal-to-noise of low flux
sources, with appropriate aperture correction applied to provide an accurate,
unbiased flux measurement at all SNR.Comment: 8 Figures, 11 Pages, Accepted to the Astronomical Journa
Large scale three-dimensional topology optimisation of heat sinks cooled by natural convection
This work presents the application of density-based topology optimisation to
the design of three-dimensional heat sinks cooled by natural convection. The
governing equations are the steady-state incompressible Navier-Stokes equations
coupled to the thermal convection-diffusion equation through the Bousinessq
approximation. The fully coupled non-linear multiphysics system is solved using
stabilised trilinear equal-order finite elements in a parallel framework
allowing for the optimisation of large scale problems with order of 40-330
million state degrees of freedom. The flow is assumed to be laminar and several
optimised designs are presented for Grashof numbers between and .
Interestingly, it is observed that the number of branches in the optimised
design increases with increasing Grashof numbers, which is opposite to
two-dimensional optimised designs.Comment: Submitted (18th of August 2015
- …
