

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 20, 2017

Parallel Sparse Matrix - Vector Product
Pure MPI and hybrid MPI-OpenMP implementation

Alexandersen, Joe; Lazarov, Boyan Stefanov; Dammann, Bernd

Publication date:
2012

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Alexandersen, J., Lazarov, B. S., & Dammann, B. (2012). Parallel Sparse Matrix - Vector Product: Pure MPI and
hybrid MPI-OpenMP implementation. Kgs. Lyngby: Technical University of Denmark (DTU). (D T U Compute.
Technical Report; No. 2012-10).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13799926?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orbit.dtu.dk/en/publications/parallel-sparse-matrix--vector-product(c9a3cf3a-2e8e-4295-bd86-cbe26217b944).html

IMM Technical Report 2012-10

Parallel Sparse Matrix - Vector Product

- Pure MPI and hybrid MPI-OpenMP implementation -

Authors: Joe Alexandersen

Boyan Lazarov
Bernd Dammann

Abstract:

This technical report contains a case study of a sparse matrix-vector product
routine, implemented for parallel execution on a computer cluster with both
pure MPI and hybrid MPI-OpenMP solutions. C++ classes for sparse data
types were developed and the report shows how these classes can be used, as
well as performance results for different cases, i.e. different types of sparse
matrices.

DTU Informatics &
DTU Mechanics
1st of October 2012

1

Preface

This report was written as part of the requirements for the DTU course
‘02616 Large Scale Modelling’ with Boyan Lazarov and Bernd Dammann as
supervisors.

The source code of the implementation shown in the report is available
on-line at orbit.dtu.dk.

http://orbit.dtu.dk/

CONTENTS 2

Contents

1 Introduction 5
1.1 Matrix-vector product . 5
1.2 Sparsity . 5

1.2.1 Triplet format . 5
1.2.2 Compressed Sparse Row [CSR] format 5

2 Implementation 7
2.1 Parallel vector . 8

2.1.1 ParVectorMap: Vector index map 8
2.1.2 ParVector: Vector class 9

2.2 Parallel sparse matrix . 10
2.2.1 MatrixCSR: CSR struct 10
2.2.2 ParMatrixSparse: Matrix class 10

2.3 Organisation of communications 12
2.3.1 Exchanging message sizes and indices 12
2.3.2 Derived datatype: MPI_Type_indexed 12

2.4 Matrix-vector product . 13
2.4.1 Non-blocking communications 14

2.5 MPI-OpenMP Hybrid . 14

3 Results 18
3.1 Generating input . 18
3.2 Timing runs . 19

3.2.1 TopOpt Cluster . 19
3.2.2 Pure MPI . 19
3.2.3 Hybrid MPI-OpenMP 23

3.3 Sun Studio Analyzer . 29

4 Conclusion 31

5 Further work 31

A C++ code 33
A.1 ParVectorMap.h . 33
A.2 ParVectorMap.cc . 34
A.3 ParVector.h . 35
A.4 ParVector.cc . 37
A.5 MatrixCSR.h . 40
A.6 ParMatrixSparse.h . 41
A.7 ParMatrixSparse.cc . 43
A.8 Timing driver: ParaMatVecTiming.cc 54

CONTENTS 3

B Matlab code 57
B.1 GenBandedMatVec.m . 57
B.2 GenTriBandedMatVec.m . 58

1 INTRODUCTION 5

1 Introduction

1.1 Matrix-vector product

The matrix-vector product of linear algebra is one of the most important
concepts in numerical modelling where linear systems are to be solved. When
dealing with large systems of equations, iterative methods are most often
used and these consist of repeatedly performing matrix-vector products to
update the solution. Therefore, a fast implementation of the matrix-vector
product is crucial if one seeks a fast and efficient iterative method.

1.2 Sparsity

A sparse matrix is where the number of non-zero entries is much smaller
than the total number of entries. As most numerical discretisation schemes,
e.g. finite difference, finite volume or finite elements, produce very sparse
matrices, it can be extremely beneficial to exploit this sparsity. By storing
only the non-zero entries, it is possible to reduce the required memory for
storage significantly. Likewise, when dealing with parallel computations the
amount of entries to be communicated between the processes is significantly
smaller when dealing with sparse matrices. Although the mentioned dis-
cretisation schemes most often produce matrices with a certain structure,
e.g. banded matrices, this project aims at an implementation that can work
with general sparse matrices with no specific pattern.

1.2.1 Triplet format

Triplet format is the simplest way for storing general sparse matrices. For
each non-zero value in the matrix, the column index, row index and value
are stored in three arrays. This way of storing the non-zero entries is in-
tuitively very easy to grasp, but the algorithms needed to perform, for ex-
ample, a matrix-vector product are often slower than for other more ad-
vanced formats.

1.2.2 Compressed Sparse Row [CSR] format

The Compressed Sparse Row [CSR] format is a condensed and economic
way to store a general sparse matrix. Instead of storing the non-zero entries
and their corresponding row and column index, the CSR format consists of
three arrays:

� vals: An array of doubles1 containing the non-zero entries of the
sparse matrix. The length of the array is equal to the number of
non-zeroes.

1It could consist of other datatypes, e.g. floats or complex, but the current implement-
ation is restricted to doubles only.

1 INTRODUCTION 6

� cols: An array of integers containing the column index of the non-zero
entries in the array of doubles. The length of the array is equal to the
number of non-zeroes.

� rows: An array of integers containing the index, in the other two
arrays, of the first non-zero entry for each row. The length of the
array is equal to the number of rows plus one. The last entry of the
array contains the number of non-zero entries, to facilitate an easy
setup of algorithms.

To illustrate, the following sparse matrix:

0.0 65.3 46.3 0.0 8.0 0.0 40.3 0.0 0.0 0.0
19.5 0.0 0.0 0.0 0.0 0.0 −99.2 0.0 0.0 0.0
−40.3 49.0 0.0 0.0 0.0 0.0 18.4 0.0 0.0 0.0
58.2 0.0 0.0 30.0.1 0.0 −63.3 0.0 0.0 0.0 −75.3
0.0 0.0 0.0 0.0 0.0 0.0 93.3 0.0 0.0 0.0
0.0 0.0 −73.5 0.0 0.0 0.0 0.0 −61.1 0.0 0.0
0.0 96.6 85.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 −13.0 68.7 0.0 16.6 0.0 0.0 −95.7 −63.5 −9.5
0.0 0.0 0.0 −84.7 52.1 0.0 0.0 −25.1 −82.1 0.0
0.0 0.0 −76.7 0.0 −46.1 0.0 0.0 0.0 0.0 −57.1


would have the following CSR array representation:

vals = {65.3,46.3,8.0,40.3,19.5,-99.2,-40.3,49.0,18.4,58.2,30.1,-

63.3,-75.3,93.3,-73.5,-61.1,96.6,85.9,-13.0,68.7,16.6,-95.7,-63.5,-

9.5,-84.7,52.1,-25.1,-82.1,-76.7,-46.1,-57.15}

cols = {1,2,4,6,0,6,0,1,6,0,3,5,9,6,2,7,1,2,1,2,4,7,8,9,3,4,7,8,2,4,9}

rows = {0,4,6,9,13,14,16,18,24,28,31}

The original full matrix contains 100 doubles, so the memory needed to
store the full matrix is 800 bytes. By using the CSR format, only 31 doubles
need to be stored. Although the two integer arrays also need to be stored,
42 entries in total, the total memory needed to store the matrix in CSR
format is 416 bytes. That is a reduction of almost 50% even for a small 10
by 10 matrix and it is easy to imagine that the amount of data to store is
significantly reduced when dealing with very large and very sparse matrices.

Another advantage of the CSR format is that it is very efficient for
algorithms for arithmetic operations and matrix-vector products. It is im-
portant to note that better formats exist, especially for clustered data, but
due to the implementation being aimed at general sparse matrices with no
specific pattern, then the CSR format is used.

2 IMPLEMENTATION 7

2 Implementation

The implementation has been carried out in the C++ programming language
and is split up into several parts, all of which will be explained in this section.
The code of the implementation can be found in appendix A.

The parallel vector and matrix representations are coded as objects and
each have a number of subfunctions that help to initialise, control and manip-
ulate the distributed data. The structure of the objects and the underlyings
functions will be explained in each their section. Figure 1 illustrates how the

Figure 1 – Illustration of how the parallel matrix and vector representations are
distributed over three processes.

parallel matrix A and vectors x and y are distributed over three processes.
The three colours; green, blue and red, represent each their process and
which data is local to each individual process. The lightly coloured areas of
the matrix is to illustrate which parts of the distributed matrix has be be
multiplied by remote vector entries, these will be termed the local-to-global
areas, whereas the fully coloured areas of the matrix are to be multiplied
with the vector entries local to the process itself, these will be termed the
local-to-local areas. Both the matrix and the vectors are partitioned by rows
because then each process only has to pass results from the product to its
own local part of vector y. Furthermore, this partitioning allows for com-
munications to be overlapped with computations, where the remote vector
entries are being communicated while the local computations are performed.
If the matrix was partitioned by columns instead, all communications would
have to be at the end when the locally computed product contributions have
to be sent to remote vector partitions.

2 IMPLEMENTATION 8

2.1 Parallel vector

The parallel vector representation is composed of two main classes: ParVectorMap
and ParVector. ParVectorMap controls the partioning of the parallel vec-
tors, and matrices, and provides information about the distribution of the
vector data. ParVector is the parallel vector object itself, which contains
the actual distributed data and functions controlling the local data.

2.1.1 ParVectorMap: Vector index map

The ParVectorMap class is a vector index map that controls the partioning
and distribution over the processes. The constructor header is as follows:

ParVectorMap (MPI_Comm ncomm , i n t lbound , i n t ubound) ;

Each process gets a lower bound and upper bound value attached to it, that
describes the global index numbers of the beginning and end of the current
process’ local array. When a vector map is to be created, all processes in
the specified MPI communicator have to call the constructor function. This
is because in the constructor function, the MPI_Allgather function is used
to share the lower and upper bounds of all other processes partaking in the
distribution of the vector:

MPI_Allgather(&lower_bound , 1 , MPI_INT , lprocbound_map , 1 , MPI_INT , comm) ;
MPI_Allgather(&upper_bound , 1 , MPI_INT , uprocbound_map , 1 , MPI_INT , comm) ;

In the above function calls the local integers, lower_bound and upper_bound,
are sent to all other processes in the communicator and all integers from
the local and remote processes are collected in the local arrays of integers,
lprocbound_map and uprocbound_map. The MPI_Allgather function is
used because all of the processes need to have the global picture of the dis-
tributed vector and therefore collective communications are obvious to use.
The class contains a series of getter functions that return various private
data for the index map, such as the size of the local array, the size of the
global array or the owner of a given global index. Furthermore, the index
map also has functions to convert global indices to local indices and vice
versa, which are useful because it is often easiest to work in local indices
when performing local operations, but the global indices are needed when
communicating with the global picture.

Each ParVectorMap object contains an integer value called users which
is the number of active users of the vector map at any given time. The
amount of users is updated every time a new object, e.g. an ParVector or
ParMatrixSparse object, is associated with the given ParVectorMap index
map object. This is to ensure, that a ParVectorMap is not deleted without
having been released by all other objects using it.

2 IMPLEMENTATION 9

2.1.2 ParVector: Vector class

The ParVector class is the representation of the distributed vector itself and
utilises the vector index map class, described above, to control the distribu-
tion of the data. When a distributed vector is to be created, the ParVector

constructor function is called by all processes in a given communicator for
which the vector should be distributed over. This does not necessarily have
to be the global MPI communicator, MPI_COMM_WORLD, but it is so through-
out this project.

ParVectorMap (MPI_Comm ncomm , i n t lbound , i n t ubound) ;

Each local process calls the constructor with their specified lower and up-
per bound index and the first thing that is set up is the ParVectorMap

objects that, as explained, control the distribution of the vector data. Each
ParVector object has a local array, using local indices, attached to it in
which the local part of the distributed vector is stored. As well as contain-
ing various simple getter functions, that return things such as the process
index map object, the local array or bounds, the ParVector class also has
some adding and setter functions. The setter functions are used if all entries
are to be set to a given value, for instance all zeroes. The adder functions:

void AddValueLocal (i n t row , double value) ;
void AddValuesLocal (i n t nindex , i n t *rows , double * values) ;

allows single values or an array of values to be added to the local array by
specifying the row indices and the corresponding values.

When dealing with numerical discretisation schemes, the vector entries
would be added during the assembly of the system. However, for testing
purposes, vector data is read in from an external input file, vector.vec,
which contains the dense vector entries in triplet format.

void ReadExtVec () ;

The external input reader simply runs through the input file and adds any
values that are within the local process bounds to the local array of data,
using:

i f ((val1 >= lower_bound) && (val1 < upper_bound)) {
AddValueLocal (index_map−>Glob2Loc (val1) , val2) ;

}

where val1 is the row index and val2 is the entry value. Notice that the
index map is used to convert the global index read from the input file to a
local index for inserting the value into the local array.

2 IMPLEMENTATION 10

2.2 Parallel sparse matrix

The parallel matrix representation is composed of a single class: ParMat-

rixSparse. ParMatrixSparse contains the distributed data and functions
to manipulate, control and perform the matrix-vector product. ParMat-

rixSparse objects utilise MatrixCSR structs to manage the sparse matrix
information in CSR format.

2.2.1 MatrixCSR: CSR struct

The MatrixCSR struct is a simple structured type that contains the values
and arrays necessary to store matrix entries in CSR format:

i n t nnz ;
i n t * rows ;
i n t * cols ;
double * vals ;

When a MatrixCSR object is to be created, it requires the number of non-
zero entries and the number of rows as input. The constructor then directs
the pointers to arrays that can contain the data as specified in section 1.2.2:

rows = new in t [nrows_in+1] ;
cols = new in t [nnz] ;
vals = new double [nnz] ;

The MatrixCSR struct is used as a simple way to contain the CSR formatted
data, making it easier to send or return as output if needed by the user.

2.2.2 ParMatrixSparse: Matrix class

The ParMatrixSparse class is the representation of the distributed sparse
matrix itself and utilises two vector index map objects to control the parti-
tioning and distribution of data. The reason for utilising two seperate index
maps for the row and columns, is so as to be able to accomodate non-square
matrices that may arise in for instance coordinate transformation operations.
The constructor:

ParMatrixSparse (ParVector* XVec , ParVector* YVec) ;

takes two ParVector objects as input so that the vector maps can be ex-
tracted from these and used to set up the partitioning of the parallel matrix.
Another option could also be to make an overloaded constructor that takes
two ParVectorMap objects as input, if only the parallel matrix is needed,
but for the current problem at hand, two ParVector objects will already
exist as the left- and right-hand side vectors of the matrix-vector product.

2 IMPLEMENTATION 11

The ParMatrixSparse class contains many of the same functions as the
ParVector class, such as the simple getters for bounds, but the essence of
the parallel matrix implementation lies in the extended functionality. While
creating and manipulating the data within the parallel sparse matrix objects,
a dynamic matrix map is used. The dynamic matrix maps are objects of the
map class from the C++ Standard Template Library [STL] and the smart
thing about these are that they allow for dynamically growing storage, which
is very useful while generating or assemblying the parallel matrix data.

std : : map<int , double> *dynmat_lloc , *dynmat_gloc ;

The data to be stored in the ParMatrixSparse object local to the process
is split into two parts. The first part is the local-to-local part, where when
performing the matrix-vector product only local data from both the matrix
and the vector are needed, and the local-to-global part, where vector entries
from remote processes are needed for performing the matrix-vector product.
These two parts are illustrated in figure 1, where the fully coloured areas
represent the local-to-local parts for each process and the lightly coloured
areas represent the local-to-global parts. This splitting of the local domain
is also used for the CSR representation of the local matrix and is done to
easily facilitate the splitting of the matrix-vector product into two parts; the
local-to-local product which is performed while the communications for the
local-to-global part is taking place.

As for the ParVector class, the matrix entries would be added to the
matrix during the assembly of the numerical discretisation, but for testing
purposes the sparse matrices are read in from an external input file, mat-
rix.mat. The ReadExtMat function works in much the same way as the
vector equivalent, in that it checks whether the entries are within the local
data range and then adds them to the local matrix representation. The
AddValueLocal function is somewhat different to the vector equivalent, in
that it checks whether the entries are within the local-to-local part or the
local-to-global part and adds it to the respective dynamic matrix map using
iterators:

std : : map<int , double > : : iterator it ;
it = dynmat [row] . find (col) ;
i f (it == dynmat [row] . end ()) {

dynmat [row] [col] = value ;
nnz++;

} e l s e {
it−>second = it−>second + value ;

}

where general naming has been used. If the entry is within the local-to-
local part then dynmat_lloc is used and dynmat_gloc if the entry is in the
local-to-global part. After the parallel sparse matrix has been read in from

2 IMPLEMENTATION 12

the input file and the matrix is finalised, the ParMatrixSparse class has a
function to convert the dynamic matrix representation to the specified CSR
format, which is needed by the implemented algorithm for performing the
sparse matrix-vector product.

The ParMatrixSparse class also contains the functions for setting up
the communications for the matrix-vector product along with the product
routine itself and these will be explained in the following subsections.

2.3 Organisation of communications

The organisation of communications between the processes is most import-
ant, as having a fast local routine would not be of much use if the communic-
ations are not fast enough to keep up. The communications are orgranised
in such a way that only a minimum number of vector entries need to be sent
between the participating processes. This is achieved by sorting through
the sparsity pattern of the local-to-global part of the local sparse matrix
and exploiting the sparsity pattern only to send the required entries using a
derived MPI datatype, namely MPI_Type_indexed.

2.3.1 Exchanging message sizes and indices

The ParMatrixSparse class contains a function called FindColsToRecv,
which basically sorts through the local-to-global sparsity pattern and notes
how many and which entries to receive from each process. This is done
through the use of integer-to-integer map objects because these allow for
easily finding existing values and adding new values, so that it is possible to
sort the column indices of the sparsity pattern in such a way that repeating
indices are only counted, and thus transferred, once.

Sends and receives for the number of entries to send and receive from
each process are then posted, so that every process partaking in the matrix-
vector product knows how many entries to send to and receive from each
other remote process. When it is known how many entries that need to be
received from each remote process, the indices of the entries to be transferred
are loaded into a buffer and sent to each of the remote processes that need to
transfer vector entries back to the local process. Meanwhile, the local process
is also receiving which entries to send to each of the remote processes. When
the non-blocking sends and receives are done, all processes now know which
entries to send to which process for the distributed matrix-vector product
to be performed.

2.3.2 Derived datatype: MPI_Type_indexed

In order only to transfer the required vector entries from one process to
another, the derived MPI datatype MPI_Type_indexed is used. The MPI
datatype MPI_Type_indexed is an easy way to communicate data that is not

2 IMPLEMENTATION 13

stored in contiguous memory locations, e.g. as in the sparse matrix-vector
product where only a select number of arbitrarily spaced entries of an array
are to be sent from one process to another. MPI_Type_indexed allows for
replication of an existing datatype, in this case MPI_DOUBLE, into a sequence
of blocks of the old datatype with different displacements, all of which are
specified in multiples of the old datatype [1]. The datatypes are tailored
for each process-to-process transfer and they are set up within a loop over
all remote processes. The call to set up the derived datatype for a given
process-to-process transfer is quite simple:

MPI_Type_indexed (count , blength , displac , MPI_DOUBLE ,&DTypeSend [i]) ;

where the function arguments are as follows:

� count: the number of entries to send to process i.

� blength: a pointer to an array of length count specifying the number
of MPI_DOUBLEs contained in each block - in this case, an array of ones.

� displac: a pointer to an array of length count specifying the displace-
ment, in number of MPI_DOUBLEs, of each block - in this case, simply
the indices, in local numbering, of the entries to send to process i.

� MPI_DOUBLE: the MPI datatype which everything is specified in.

� &DTypeSend[i]: a pointer to where the new MPI datatype is to be
stored - in this case, the datatypes for each process-to-process transfer
is stored in an array of datatypes, so the MPI datatype for sending to
process i is stored in array element i.

The above function call is to set up the datatype for ‘current process’-to-
‘process number i’ sending of entry values. The corresponding datatype
for ‘process number i’-to-‘current process’ receiving of entry values is very
similar, except that the array of displacements, displac, instead are in
global numbering. This is because the received entries, from all remote
processes, are to be inserted into an array of global vector length, where the
entries from each remote process are placed at the corresponding indices.
This is to facilitate an easy setup of the sparse CSR matrix-vector product
algorithm as explained in the next subsection.

2.4 Matrix-vector product

As already explained, the parallel sparse matrix-vector product is contained
as a subfunction of the ParMatrixSparse class. The implementation utilises
non-blocking and overlapping communications with the abovementioned de-
rived MPI datatype. This was chosen as the initial implementation because

2 IMPLEMENTATION 14

then the local-to-local product can be done while the transfers of vector
entries from remote processes are being performed.

The algorithm for performing the sparse matrix-vector product using
CSR formatted sparse matrix data and a dense vector is as follows using
general naming:

f o r (i = 0 ; i < nrows ; i++){
f o r (k = CSR−>rows [i] ; k < CSR−>rows [i+1] ; k++){

j = x_index_map−>Glob2Loc (CSR−>cols [k]) ;
v = CSR−>vals [k]* vecdat [j] ;
YVec−>AddValueLocal (i , v) ;

}
}

where depending on whether it is the local-to-local or local-to-global product
contribution to be calculated, CSR is either the local-to-local or local-to-
global MatrixCSR object and vecdat is either the local vector array, XVec-
>GetArray(), or the received remote vector entries, rBuf.

2.4.1 Non-blocking communications

The workflow of the matrix-vector product routine using non-blocking com-
munications is as follows:

1. Post all sends and receives using non-blocking communications.

2. Calculate the local-to-local contribution to the product, using the
local-to-local CSR object and the local right-hand side vector, and
add to the local result vector.

3. Wait for receives of remote vector entries to complete.

4. Calculate the local-to-global contribution to the product, using the
local-to-global CSR object and the received right-hand side vector
entries, and add to the local result vector.

As already mentioned, non-blocking communications are used because then
the local-to-local product can be done while the transfers of vector entries
from remote processes is being performed. Whether this has any significant
effect, as opposed to blocking communications, has not been investigated.

2.5 MPI-OpenMP Hybrid

In this section, a hybrid implementation, where MPI is mixed with OpenMP,
will be described. MPI is used to handle the coarse grain parallelism, that
is the partitioning of the parallel matrices and vectors, and OpenMP is
used to further split the work involved in the matrix-vector product into
smaller grains. On a cluster, the configuration of a run can be tailored such

2 IMPLEMENTATION 15

that MPI handles the communication between nodes and OpenMP is used
locally inside each SMP node. The combination of MPI and OpenMP can be
powerful if handled with care and implemented properly. The only part of
the original implementation that has been considered is the matrix-vector
product itself, in that this is the critical routine and the subject of this
project.

In order to mix MPI with OpenMP, MPI needs to be initialised us-
ing the thread supporting version of MPI_Init, namely MPI_Init_thread.
MPI_Init_thread initialises MPI in much the same way that MPI_Init does,
but it also initialises the thread environment and sets up the required level
of thread support. The required level of thread support in the hybrid im-
plementation is specified as MPI_THREAD_FUNNELED, which means that the
process can be multithreaded but the programmer has to make sure that
only the master thread makes MPI calls. This will be returned to at a later
stage.

The hybrid implementation of the matrix-vector product can be seen
below:

#pragma omp p a r a l l e l d e f au l t (shared) p r i va t e (i , j , k , v) {
// Star t omp p a r a l l e l r eg i on
// Ca lcu la te l o c a l−l o c a l product
i f (CSR_lloc != NULL) {

#pragma omp f o r schedule (guided)
f o r (i = 0 ; i < nrows ; i++){

f o r (k = CSR_lloc−>rows [i] ; k < CSR_lloc−>rows [i+1] ; k++){
j = x_index_map−>Glob2Loc (CSR_lloc−>cols [k]) ;
v = CSR_lloc−>vals [k]* sBuf [j] ;
YVec−>AddValueLocal (i , v) ;

}
}

}
// Wait f o r r e c e i v i n g o f ghos tva lue s to complete
#pragma omp barrier

#pragma omp master

{
MPI_Waitall (nProcs−1,Rreqs , Rstat) ;

}
#pragma omp barrier

// Ca lcu la te l o c a l−g l oba l product
i f (CSR_gloc != NULL) {

#pragma omp f o r schedule (guided)
f o r (i = 0 ; i < nrows ; i++){

f o r (k = CSR_gloc−>rows [i] ; k < CSR_gloc−>rows [i+1] ; k++){
j = CSR_gloc−>cols [k] ;
v = CSR_gloc−>vals [k]* rBuf [j] ;
YVec−>AddValueLocal (i , v) ;

}
}

}
} // End o f omp p a r a l l e l r eg i on

The main workload, in the matrix-vector product routine, consists of the
two sets of nested loops over the matrix entries; the first calculates the

2 IMPLEMENTATION 16

local-to-local contribution to the product and the second the local-to-global
contribution. Therefore, the parallel region is defined as covering these two
sets of nested loops. The default(shared) clause is used to give all variables
a default shared attribute. This is done so as to avoid having to explicitly
define the data-sharing attribute for all variables, instead only those where
it is critical, that they be private to each thread, need to be specified. This is
done so using the private clause, which is used to specify that each thread
needs to have a unique and local instance of the variables used to count
through the matrix and vector entries.

The outer loops of the two sets of nested loops are chosen to be par-
allelised using OpenMP. This results in a partitioning of the matrix-vector
product by rows and is done in order to assure that the threads do not at-
tempt to write to the same location of the results vector, YVec, at the same
time. By partitioning the product by rows, each thread handles a differ-
ent part of the local result vector and simultaneous data writing is avoided.
Furthermore, none of the instructions inside the loops depend on previous
values of the result vector and therefore this can be done safely.

After the calculation of the local-to-local product contribution, there is a
required call to the MPI_Waitall function in order to ensure that the receiv-
ing of the remote vector entries is finished, before beginning the calculation
of the local-to-global product contribution. It is important that this call is
only performed by one thread per process, here the main thread, and one
approach to do this could be to simply have defined seperate parallel regions
for the first and second product contributions. However, this would lead to
unneccessary overhead due to the forking-and-joining of threads having to
be done twice. Therefore, the parallel region is defined as covering both
product contributions and it is ensured that only the master thread per-
forms the MPI_Waitall call. This is ensured using the master construct
and this is encapsulated in barrier constructs due to the lack of an implied
barrier, both at the entry to and exit from the master construct.

The schedule clause is used to control the scheduling of the parallel
loops, that is to control how the iterations are distributed over the threads.
The initial thought was to use static scheduling, which divides the itera-
tions over the threads in equal, or almost equal, sized chunks and this gives
the static scheduling the least overhead [6]. However, by experimenting,
the author has found that the guided scheduling performs the best for the
used matrices and therefore this is used. The guided scheduling assigns
iterations to threads as they are requested and the threads are assigned a
new set of iterations when the first are done. The size of the assigned chunks
decrease proportionally to the number of unassigned iterations. The reason
as to why this scheduling type performs very well, may be the fact that the
workloads are relatively poorly balanced and unpredictable for the current

2 IMPLEMENTATION 17

matrices used in the investigation. When the banded matrices2 are par-
tioned using MPI, this can result in local-to-local and local-to-global parts
of the local matrices where the number of entries per row is strongly depend-
ent on the row number, as can be seen in figure 2. Likewise the completely
random matrices2, as the name suggests, are randomly distributed and the
workload therefore is also randomly distributed between the processes and
the threads.

Figure 2 – Illustration of how the banded matrices are distributed over three
processes and how the entries per row is strongly row-dependent for the

global-to-local parts.

2The matrices are described in section 3.1.

3 RESULTS 18

3 Results

3.1 Generating input

To test the implementation, some sample matrices and vectors are generated
using a Matlab-script. Three types of matrices are generated randomly for
testing the implementation. Firstly, diagonally banded matrices are gener-
ated, where the random entries are concentrated around the main diagonal
of the matrix within a certain spread. Two subtypes of the banded matrices
are generated; ones containing a maximum of 10 entries per row, which is
roughly equivalent to a two-dimensional numerical discretisation, and ones
containing a maximum of 100 entries per row, which is roughly equivalent to
a three-dimensional numerical discretisation. Secondly, tridiagonally banded
matrices are generated, where two additional diagonal bands are displaced
a certain distance from the main diagonal. These contain a maximum of
20 entries per row. Thirdly, randomly distributed matrices are generated,
where the random entries are spreadout over the entire matrix. The random
matrices are generated containing a maximum of 10 or 100 entries per row.

For each matrix, a matching dense vector is generated with random
values. The vectors and matrices are exported to a standard textfile in
triplet-format using a modified MatrixMarket output script [2]. The Mat-
lab-scripts can be found in appendix B. Information on the matrices used
for testing the implementation is tabulated in tables 1, 2 and 3 and figure
3 shows the sparsity pattern of two of the generated matrices, a banded
matrix and a tri-banded matrix.

Type Size Non-zeroes

Banded “2D” 40k × 40k 394550

Banded “2D” 160k × 160k 1581304

Banded “2D” 320k × 320k 3159071

Tri-banded 160k × 160k 3089302

Tri-banded 320k × 320k 6216366

Table 1 – Information about the initial matrices used for testing the
implementation.

Type Size Non-zeroes

Banded “2D” 160k × 160k 1581304

Banded “2D” 320k × 320k 3159071

Banded “3D” 160k × 160k 14652683

Banded “3D” 320k × 320k 28824180

Table 2 – Information about the banded matrices used for testing the
implementation.

3 RESULTS 19

Type Size Non-zeroes

Random 10 160k × 160k 1599961

Random 10 320k × 320k 3199959

Random 100 160k × 160k 15994925

Random 100 320k × 320k 31995059

Table 3 – Information about the random matrices used for testing the
implementation.

(a) Banded 160k × 160k (b) Tri-banded 160k × 160k

Figure 3 – Sparsity patterns for two sample matrices.

3.2 Timing runs

3.2.1 TopOpt Cluster

The timing runs were performed on the TopOpt cluster at the Section for
Solid Mechanics at the Department of Mechanical Engineering. The cluster
consists of 21 HP SL390s nodes, each equipped with two 6 core Intel Xeon
X5660 CPUs (2.80 GHz) and 48GB RAM connected with QDR Infiniband.
Access to the cluster was secured through the students affiliation with the
TopOpt research group.

For each timing run, the parallel matrix-vector product is performed
a total of 5000 times, to average out load fluctuations of the cluster, and
the total walltime is saved and used to investigate the scalability of the
implementation.

3.2.2 Pure MPI

Figure 4 shows the speed-up as a function of processors for the matrices
listed in table 1. The speed-up is measured relative to the time taken for a
single processor run and the timing runs are compared to linear scalability.

3 RESULTS 20

Figure 4 – Scalability plot for the matrices listed in tables 1.

It can be seen that the current implementation scales quite nicely but still
has a lot of room for improvement. A trend can be observed, that as the
problem size is increased for the banded matrices, the point at which the
speed-up peaks is increased also. This makes sense as the amount of data
to be treated is also getting larger and therefore more processes can be
utilised before the increasing amount of communications begin to dominate
the execution time.

The same trend can be said to be true for the tri-banded matrices and
these both show better speed-up than for the banded matrices. The reason
for the improved speed-up when working with tri-banded matrices, could be
due to the increased amount of non-zeroes, which fits with the explanation
posed for the banded matrices. It can also be postulated that combined with
this, the fact that the extra bands are displaced from the main diagonal can
explain the increased speed-up, as the workload thereby is balanced better
than for the banded case. The banded 320k × 320k matrix has almost the
same amount of non-zeroes as the tri-banded 160k × 160k matrix, but the
later shows much larger speed-up. This could very well be due to the load
balancing being improved, as just explained.

From figure 4 it can also be seen that the speed-up for the banded and tri-
banded matrices, follow the others of the same type up until 12 processors.
This makes sense as this is the point where inter-node communication is

3 RESULTS 21

beginning, whereas up until 12 processors everything has been contained
within the same node. However, it is interesting to note that the 160k ×
160k and 320k × 320k banded matrices actually follow each other up to 36
processors.

If one takes the 320k × 320k tri-banded matrix to be the limiting case
for the current timing runs, it can be postulated using Amdahl’s law that
the parallelised portion of the program amounts to roughly 98.6%. This is of
course a very rough estimate, seeing as it is impossible to know whether the
320k × 320k tri-banded matrix is the limiting case for the implementation.

Type Size Optimal N Optimal speed-up

Banded 40k × 40k 24 11.38

Banded 160k × 160k 36 16.19

Banded 320k × 320k 48 17.24

Tri-banded 160k × 160k 48 21.19

Tri-banded 320k × 320k 48 25.86

Table 4 – Optimal number of processes and corresponding speed-up for the
matrices used for testing the implementation.

Table 4 shows the optimal number of processors, and the corresponding
speed-up, for the different matrices. It can be seen that for the larger prob-
lems, it appears that the optimal number of processors is approximately 48.
Of course this number is found from the discrete points from the timing
runs, so the optimal could theoretically be slightly lower or slightly higher,
but this would not utilise all CPUs on a given number of nodes.

Figure 5 shows the speed-up as a function of processors for the matrices
listed in table 2. The speed-up is measured relative to the time taken for a
single processor run and the timing runs are compared to linear scalability.
It can be seen that the “3D” matrices scale much better than the “2D”
equivalents and close to linearly up to around 24-36 processors. This makes
sense as the “3D” matrices contain more entries and therefore lead to more
computations, in turn leaving more time for communications. Furthermore,
the entries are distributed in a wider band around the diagonal than for the
“2D” equivalents, so the workload is distributed over more processes.

Figure 6 shows the speed-up as a function of processors for the matrices
listed in table 3. As for the banded matrices, it can be seen that the matrices
with random-100 matrices scale much better than the random-10 matrices
and close to linearly up to around 24-36 processors. It is interesting to see
that the scalability of the random-100 matrices exhibits a form of snap after
which the speed-up goes from being linear to become more or less constant.
The sudden peak at N = 84 for the 160k × 160k random-100 matrix is also
interesting and can possibly be explained to be an effect of a particularly
favourable partitioning of the matrix. Given that the matrix entries are

3 RESULTS 22

Figure 5 – Scalability plot for the matrices listed in table 2.

Figure 6 – Scalability plot for the matrices listed in table 3.

3 RESULTS 23

completely randomly distributed, particular sections of the partitioned mat-
rix may be completely free of entries and therefore not be partaking in the
communications.

When comparing figures 5 and 6, it is easily seen that the maximum
speed-up for the random matrices is significantly lower than for the banded
matrices. This makes sense, as the entries of the random matrices are spread
over the entire matrix and therefore require the local processes to commu-
nicate with many, if not all, other processes to receive the needed remote
vector entries to perform the local-to-global product.

3.2.3 Hybrid MPI-OpenMP

In this section, the hybrid implementation is compared to the original im-
plementation. Four different configurations of utilising the processors are
used, where the node to process and thread to process ratios are varied,
and these are tabulated in table 5. All of the configurations utilise a total

Name Processes/node Threads/process

1 × 12 1 12

2 × 6 2 6

2 × 12
2 12

(overloaded)

4 × 3 4 3

Table 5 – Information about the random matrices used for testing the
implementation.

number of threads per node according to the amount of processors of each
node (12), except for the third configuration, 2× 12, which is an attempt at
checking whether overloading the processors of each node is beneficial. The
scalability of the pure MPI implementation will be included in the following
plots as a reference.

Figure 7 shows the scalability achieved for the 160k× 160k “3D” banded
matrix using the hybrid implementation. It can be seen that all of the con-
figurations, aswell as the pure MPI run, perform similarly and close to linear
up until approximately 48 processors, except for the overloaded and 1 × 12
configurations. The 1 × 12 configuration is clearly inferior compared to all
of the others and this makes sense. With this configuration, the matrix and
vectors are distributed over the nodes with one partition per node, there-
fore everytime that information needs to be transfered between processes
it is done over the network. This is of course slower as compared to the
local transfer speed obtainable between processes on the same nodes when
using configurations with several processes on the same node. Furthermore,
when only one process is allocated per node, not all worker threads will be
allocated to the same socket as the process. Therefore, some threads will

3 RESULTS 24

most likely have to access memory that is allocated to the other socket of
the node, thus increasing the time taken to access the memory. The optimal
configuration seems to be 2 × 6, which continues to scale after the other
configurations have started to bend off, up until 108 processors yielding a
speed-up of approximately 80.

The sudden drop in speed-up of the 2×6, 2×12 and 4×3 configurations
at N = 84 is rather strange. Several runs, using different combinations
of nodes, have been performed and yielded the same results and therefore
currently no explanation can be offered for this anomaly.

Figure 8 shows the scalability achieved for the 320k× 320k “3D” banded
matrix using the hybrid implementation. It can be seen that the pure MPI
and 4×3 configurations perform similarly and better than the rest, up until
N = 48 where they are overtaken by the 2×6 configuration. It is interesting
to observe that the 4× 3 configuration overtakes the 2× 6 configuration for
96 < N ≤ 120. Therefore, the 4×3 configuration yields the optimal speed-up
this time, of approximately 85 at 120 processors.

Again, as of yet no explanation can be offered for the sudden drop of the
2 × 6, 2 × 12 and 4 × 3 configurations around N = 72 ± 12.

Figure 9 shows the scalability achieved for the 160k × 160k random-100
matrix using the hybrid implementation. It can be seen that the 2 × 6 con-
figuration yields super-linear speed-up until N = 36 whereafter it starts to
bend off. The 4 × 3 configuration also performs very well, yielding close
to linear scalability up until N = 48. As always the 1 × 12 configurations
performs inferior to the other configurations, but for this matrix it actually
overtakes the pure MPI run in the interval of 48 ≤ N ≤ 96. The configura-
tions utilising 2 processes per node exhibit a lowered speed-up for N = 48
and N = 60, which again seems strange and the results remain the same for
several different runs. However, due to the fact that both configurations util-
ises the same partitioning, that is 2 processes per node, it can be stipulated
that the drop is due to a particularly bad partitioning of the distributed
matrix resulting in increased communications and a poor distribution of
workload.

Figure 10 shows the scalability achieved for the 320k×320k random-100
matrix using the hybrid implementation. It can be seen that the 2 × 6 con-
figuration yields super-linear speed-up, this time remaining above linear at
least until N = 96, except for a drop at N = 48 and N = 60. It is inter-
esting, and strange, to note that the scalability curves exhibit very similar
behaviour for both of the random matrices. The configurations utilising 2
processes per node exhibit a lowered speed-up for N = 48 and N = 60 and
the 4 × 3 configuration exhibits a slightly increased speed-up around the
same interval. This seems strange and rather suspiscious, but unfortunately
this has not been further investigated due to time constraints. Again, the
2×6 configuration yields the optimal speed-up of just under 120 at N = 120
and this would most likely increase for more processors.

3 RESULTS 25

Figure 7 – Scalability plot for the 160k × 160k “3D” banded matrix, comparing
hybrid implementation with pure MPI implementation.

Figure 8 – Scalability plot for the 320k × 320k “3D” banded matrix, comparing
hybrid implementation with pure MPI implementation.

3 RESULTS 26

Figure 9 – Scalability plot for the 160k × 160k random-100 matrix, comparing
hybrid implementation with pure MPI implementation.

Figure 11 shows the scalability achieved for the “2D” matrices using the
hybrid implementation. It can be seen that for both the small and larger
matrices, the pure MPI implementation performs better up until N = 48
and N = 60, respectively, where the 2 × 6 hybrid configuration takes over.
From hereon forwards, the 2×6 configuration performs better than the pure
MPI implementation, yielding an optimal speed-up of approximately 18 and
20, respectively for the small and large matrix, at N = 120 (with respect
to the investigated interval). However, it does not seem like a viable option
to approximately triple the amount of processors just to get an additional
speed-up of around 2-3.

Figure 12 shows the scalability achieved for the random-10 matrices using
the hybrid implementation. It is seen that the 2 × 6 hybrid configuration
outperforms the pure MPI implementation for both matrices in the interval
of 12 ≤ N ≤ 48. For the 160k × 160k matrix, the 2 × 6 configuration does
not yield a maximum speed-up that is larger than that of the pure MPI
implementation - both are around 9. It does however yield it using less
processors that the pure MPI implementation. For the 320k× 320k matrix,
the 2 × 6 configuration yields a slightly higher maximal speed-up of 10, as
compared to 9 using the pure MPI implementation, at N = 24 but drops to
around the same level as the pure MPI implementation afterwards.

3 RESULTS 27

Figure 10 – Scalability plot for the 320k × 320k random-100 matrix, comparing
hybrid implementation with pure MPI implementation.

(a) 160k × 160k (b) 320k × 320k

Figure 11 – Scalability plot for the “2D” banded matrices, comparing hybrid
implementation with pure MPI implementation.

3 RESULTS 28

(a) 160k × 160k (b) 320k × 320k

Figure 12 – Scalability plot for the random-10 matrices, comparing hybrid
implementation with pure MPI implementation.

3 RESULTS 29

3.3 Sun Studio Analyzer

The Sun Studio Analyzer is used to investigate the banded 160k × 160k
matrices. The analyzer is used to investigate how the percentage of time
spent waiting for receiving the external vector entries, in the matrix-vector
product routine, depends on the number of processors. Figure 13 shows

(a) Speed-up (b) Percentage of time spent on
MPI_Waitall

Figure 13 – Scalability plot for the “2D” banded matrices, comparing hybrid
implementation with pure MPI implementation.

the results gained from the Sun Studio Analyzer runs. The pure MPI im-
plementation is analysed on both the “2D” and “3D” 160k × 160k banded
matrices, whereas the hybrid MPI-OpenMP implementation only is analysed
on the “3D” 160k × 160k banded matrix. Figure 13a shows the scalability
for the runs on the HPC cluster using the collect command. The same
trend is seen as in section 3.2.2, that the “3D” scales much better than the
“2D” equivalent. However, the hybrid implementation performs somewhat
worse than in section 3.2.3, but it is important to remember that a differ-
ent configuration has been used here, namely a 2 × 4 configuration with 2
processes on each node and 4 threads per process. This is due to the fact
that the nodes of the HPC cluster have 8 processor cores, as compared to
12 for the TopOpt cluster. It is however interesting to note that the hybrid
implementation exhibits the same behaviour as in section 3.2.3, namely the
anomalous drop in speed-up at N = 56. Figure 13b shows the percentage of
the time spent in the matrix-vector product routine, that is used on waiting
for the incoming communications to finish. It is seen that all configurations
in fact exhibit an increase in the percentage of time spent waiting at N = 56.
This is rather interesting, in that it shows that something is affecting the
communications when using 56 processors, or maybe rather the fact that 7

3 RESULTS 30

nodes are in play. The pure MPI runs have the partitioning of the data in
common, in that the matrix and vectors are split into 56 partitons. The
hybrid run on the other hand, is only split into 14 partitions.

(a) 6nodes − 8processes (b) 7nodes − 8processes

Figure 14 – Sum of durations spent on receiving data for each process for the pure
MPI implementation. “3D” 160k × 160k banded matrix.

(a) 6nodes − 2 × 4 (b) 6nodes − 2 × 4

Figure 15 – Sum of durations spent on receiving data for each process for the
hybrid implementation. “3D” 160k × 160k banded matrix.

Figures 14 and 15 show the sum of the duration spent on receiving data
for each process. Figures 14a and 15a are for 6 active nodes and figures 14b
and 15b are for 7 active nodes. It is easiliy seen that the communications are
particularly unfavourable and collected to either one or two processes for the
runs using 7 active nodes, as compared to a better distribution of commu-
nications for the runs using 6 active nodes. Unfortunately, time constraints
have restricted further investigation into the cause of these anomalous drops
in the performance, but there certainly seems to be a pattern.

4 CONCLUSION 31

4 Conclusion

It can be concluded that distributed parallel vector and sparse matrix repres-
entations have succesfully been implemented. The implementation utilises
the CSR format for storing the sparse matrix entries which leads to an ef-
ficient matrix-vector product algorithm. As shown in section 3.2, the pure
MPI implementation performs very well and is scalable up to approximately
48 processors for the smaller problems investigated. For the large prob-
lems, up until around 82 processors yielding a speed-up of approximately
45. The main conclusion is that the implemented hybrid MPI-OpenMP
procedure for the parallel matrix-vector product shows very promising res-
ults for the tested matrices. The hybrid procedure performs especially well
for the random matrices, where the entries are distributed over the entire
matrix, yielding a maximum speed-up of approximately 85 and 120, for the
160k × 160k and 320k × 320k respectively, at 120 processors. The hybrid
procedure also performs well for the banded matrices investigated, yielding
a maximum speed-up of approximately 80 and 85, for the 160k × 160k and
320k× 320k respectively, at 108 and 120 processors. Furthermore, it can be
concluded that generally it appears that the 2 × 6 configuration performs
superior to the other configurations tested, but the 4 × 3 configuration also
performs well and sometimes better than the prior.

5 Further work

It could also be interesting to investigate what effect the MPI_Type_indexed
datatype actually has on the communication time and whether it can be
effectivised. As it is now, the blocks are just assumed to be all of length
one. But if several entries in index order are needed to be transferred, it is
possible that it could be more efficient to create the datatype using blocks
where entries in sequence are treated as a single block of a certain length.

Further investigation into the anomalous behaviour, exhibited by the
hybrid configurations at various processor numbers, would be beneficial. It
would be useful to know what triggers this behaviour, whether it is a poor
distribution of workload and/or a particularly unfavourable distribution of
the matrix entries.

Furthermore, it would have been very interesting to investigate a hy-
brid MPI-CUDA implementation, utilising the sparse matrix-vector product
routine from NVIDIA’s CUDA cuSPARSE library.

REFERENCES 32

References

Documents

[1] Message Passing Interface Forum - MPI: A Message-Passing Interface
Standard, Version 2.2 (2009), http://www.mpi-forum.org/docs/mpi-
2.2/mpi22-report.pdf

Internet

[2] MatrixMarket input/output scripts for Matlab,
http://math.nist.gov/MatrixMarket/mmio/matlab/mmiomatlab.html

Books

[3] N MacDonald, E Minty, T Harding, S Brown - Writing Message-Passing
Parallel Programs with MPI, Course notes, University of Edinburgh

[4] WP Petersen, P Arbenz - Introduction to Parallel Computing: A Prac-
tical Guide with Examples in C, Oxford University Press (2004) ISBN:
0-19-851576-6

[5] TA Davis - Direct Methods for Sparse Linear Systems, SIAM (2006)
ISBN: 0-89871-613-6

[6] B Chapman, G Jost, R van der Pas - Using OpenMP: Portable Shared
Memory Parallel Programming, The MIT Press (2007) ISBN: 0-262-
53302-7

''http://www.mpi-forum.org/docs/mpi-2.2/mpi22-report.pdf''
''http://www.mpi-forum.org/docs/mpi-2.2/mpi22-report.pdf''
''http://math.nist.gov/MatrixMarket/mmio/matlab/mmiomatlab.html''

A C++ CODE 33

A C++ code

A.1 ParVectorMap.h

// MPI vec to r map c l a s s − header

#inc lude <mpi . h>
#inc lude <map>
#inc lude <vector>
#inc lude <iostream>
#inc lude <fstream>

c l a s s ParVectorMap

{

pr i va t e :
// MPI va r i a b l e s
MPI_Comm comm ;
i n t nproc ;
i n t rank ;

// Local bounds
i n t lower_bound ;
i n t upper_bound ;

// S i z e o f l o c a l and g l oba l vec to r
i n t local_size ;
i n t loctot_size ;
i n t global_size ;

// Vector map de s c r i b i n g proce s s ID (rank) −−> max index+1
std : : map<int , int> vectormap ;

// Process lower and upper bound maps
i n t *lprocbound_map , *uprocbound_map ;

// Maps mapping l o c a l index to g l oba l − and v i c e ver sa
std : : map<int , int> loc2glob ;
std : : map<int , int> glob2loc ;

// Active ”u s e r s ” o f vec to r map
in t users ;

pub l i c :

// Constructor
ParVectorMap (MPI_Comm ncomm , i n t lbound , i n t ubound) ; // , i n t←↩

nghost , i n t * g l oba l i nd ex) ;
// Destroyer
˜ParVectorMap () ;

// Convert l o c a l index to g l oba l − and v i c e ver sa
i n t Loc2Glob (i n t local_index) ;
i n t Glob2Loc (i n t global_index) ;

// Getter f unc t i on s
i n t GetOwner (i n t index) ;
// Quick and easy func t i on s
i n t GetRank () { r e turn rank ; } ;

A C++ CODE 34

i n t GetLowerBound () { r e turn lower_bound ; } ;
i n t GetUpperBound () { r e turn upper_bound ; } ;
i n t GetLocalSize () { r e turn local_size ; } ;
i n t GetGlobalSize () { r e turn global_size ; } ;
i n t GetLocTotSize () { r e turn loctot_size ; } ;

// Active ”u s e r s ” o f vec to r map
in t AddUser () {users++;return users ; } ;
i n t DeleteUser () {users−−; r e turn users ; } ;
i n t GetUser () { r e turn users ; } ;

} ;

A.2 ParVectorMap.cc

// MPI vec to r map c l a s s
#inc lude <ParVectorMap . h>

ParVectorMap : : ParVectorMap (MPI_Comm ncomm , i n t lbound , i n t ubound)
{

// I n i t i a l i s a t i o n o f MPI va r i a b l e s
MPI_Comm_dup (ncomm ,&comm) ;
MPI_Comm_size (comm ,&nproc) ;
MPI_Comm_rank (comm ,&rank) ;
// Se t t i ng lower and upper bound
lower_bound = lbound ;
upper_bound = ubound ;
// Ca l cu l a t ing s i z e o f l o c a l vec to r
local_size = upper_bound − lower_bound ;
// I n i t i a l i s i n g g l oba l s i z e to 0
global_size = 0 ;
// I n i t i a l i s i n g proce s s boundary maps to NULL
lprocbound_map = NULL ;
uprocbound_map = NULL ;

// Acquire the g l oba l view o f vec to r
{

// Al l o ca t e p roce s s boundary maps to number o f p r o c e s s e s
lprocbound_map = new in t [nproc] ;
uprocbound_map = new in t [nproc] ;

// Gather a l l lower bounds and a l l upper bounds
MPI_Allgather(&lower_bound , 1 , MPI_INT , lprocbound_map , 1 ,←↩

MPI_INT , comm) ;
MPI_Allgather(&upper_bound , 1 , MPI_INT , uprocbound_map , 1 ,←↩

MPI_INT , comm) ;

// Find g l oba l s i z e and s e t vectormap to de s c r i b e upper ←↩
bounds

f o r (i n t i=0; i<nproc ; i++) {
vectormap [i] = uprocbound_map [i] ;
i f (uprocbound_map [i] > global_size) {

global_size = uprocbound_map [i] ;
}

}

}

A C++ CODE 35

// TEMP UNTIL GHOST INTRODUCTION
loctot_size = local_size ;

}

ParVectorMap : : ˜ ParVectorMap ()
{

// Free communicator
MPI_Comm_free(&comm) ;
// Dea l l o ca t e p roce s s bound maps
i f (lprocbound_map !=NULL) {

de l e t e [] lprocbound_map ;
}

i f (uprocbound_map !=NULL) {
de l e t e [] uprocbound_map ;

}

}

i n t ParVectorMap : : GetOwner (i n t index)
{

// I f index i s not out s id e o f the g l oba l vec to r
i f ((index < global_size) && (index >= 0)) {

// Check upper bounds f o r proce s s e s , u n t i l index i s lower ←↩
and return the proce s s .

f o r (i n t i = 0 ; i<nproc ; i++) {
i f (index < uprocbound_map [i]) { r e turn i ;}

}
} e l s e {

r e turn −1;
}

}

i n t ParVectorMap : : Loc2Glob (i n t local_index)
{

// I f l o c a l index i s with in bounds o f the l o c a l vec to r
i f ((local_index < local_size)&&(local_index >= 0)) {

r e turn lower_bound + local_index ;
} e l s e {

// un t i l i n t r oduc t i on o f ghost s
re turn −1;

}

}

i n t ParVectorMap : : Glob2Loc (i n t global_index)
{

// I f g l oba l index i s with in the bounds f o r the l o c a l p roce s s
i f ((global_index >= lower_bound)&&(global_index < upper_bound)←↩

) {
r e turn (global_index − lower_bound) ;

} e l s e {
// un t i l i n t r oduc t i on o f ghost s
re turn −1;

}

}

A.3 ParVector.h

A C++ CODE 36

// MPI vec to r c l a s s − header

#inc lude <mpi . h>
// Input /output
#inc lude <iostream>
#inc lude <fstream>
#inc lude <sstream>
#inc lude <s t r i ng>

#inc lude <ParVectorMap . h>

c l a s s ParVector

{

pr i va t e :

// Local array and s i z e
double *array ;
i n t array_size ;
i n t local_size ;

// Vector index map
ParVectorMap *index_map ;

pub l i c :

// Constructors
ParVector () ;
ParVector (MPI_Comm ncomm , i n t lbound , i n t ubound) ;
// Destructor
˜ParVector () ;

// Getters
ParVectorMap* GetVectorMap () { r e turn index_map ; } ;
i n t GetLowerBound () ;

i n t GetUpperBound () ;
i n t GetLocalSize () ;
i n t GetGlobalSize () ;
i n t GetArraySize () ;
double * GetArray () { r e turn array ; } ;

// Adders and s e t t e r s
void AddValueLocal (i n t row , double value) ;
void AddValuesLocal (i n t nindex , i n t *rows , double * values) ;
void SetToValue (double value) ;
void SetToZero () ;

// External r eader
void ReadExtVec () ;

// Convert l o c a l index to g l oba l − and v i c e ver sa
i n t Loc2Glob (i n t local_index) ;
i n t Glob2Loc (i n t global_index) ;

void RestoreArray () {} ;

} ;

A C++ CODE 37

A.4 ParVector.cc

// MPI vec to r c l a s s
#inc lude <ParVector . h>

ParVector : : ParVector ()
{

array = NULL ;
array_size = 0 ;
local_size = 0 ;
index_map = NULL ;

}

ParVector : : ParVector (MPI_Comm ncomm , i n t lbound , i n t ubound)
{

// Generate vec to r index map
index_map = new ParVectorMap (ncomm , lbound , ubound) ;
index_map−>AddUser () ;

// Local s i z e
local_size = index_map−>GetLocalSize () ;

// A l l o ca t e array o f s i z e (l o c a l + ghost s)
array_size = index_map−>GetLocTotSize () ;
array = new double [array_size] ;

}

ParVector : : ˜ ParVector ()
{

// I f index map has been de f ined
i f (index_map != NULL) {

index_map−>DeleteUser () ;
// I f the re are no more u s e r s o f index map , then d e l e t e i t
i f (index_map−>GetUser () == 0) {

de l e t e index_map ;
}

}

// I f array has been de f ined
i f (array != NULL) {

de l e t e [] array ;
}

}

i n t ParVector : : GetLowerBound ()
{

// I f index map has been de f ined −−> r e turn maps lower bound
i f (index_map != NULL) {

r e turn index_map−>GetLowerBound () ;
// Else re turn 0
} e l s e {

r e turn 0 ;
}

A C++ CODE 38

}

i n t ParVector : : GetUpperBound ()
{

// I f index map has been de f ined −−> r e turn maps upper bound
i f (index_map != NULL) {

r e turn index_map−>GetUpperBound () ;
// Else re turn 0
} e l s e {

r e turn 0 ;
}

}

i n t ParVector : : GetLocalSize ()
{

r e turn local_size ;

}

i n t ParVector : : GetGlobalSize ()
{

// I f index map has been de f ined −−> r e turn maps g l oba l s i z e
i f (index_map != NULL) {

r e turn index_map−>GetGlobalSize () ;
// Else re turn 0
} e l s e {

r e turn 0 ;
}

}

i n t ParVector : : GetArraySize ()
{

r e turn array_size ;

}

void ParVector : : AddValueLocal (i n t row , double value)
{

// I f s p e c i f i e d l o c a t i o n i s with in the l o c a l array s i z e , add i t ←↩
to e x i s t i n g value

i f (row < array_size) {
array [row] = array [row] + value ;

}
}

void ParVector : : AddValuesLocal (i n t nindex , i n t *rows , double * values←↩
)

{
// For a l l s p e c i f i e d l o c a t i on s , add to e x i s t i n g
f o r (i n t i = 0 ; i < nindex ; i++) {

AddValueLocal (rows [i] , values [i]) ;
}

}

A C++ CODE 39

void ParVector : : SetToValue (double value)
{

// Set e n t i r e array to a s p e c i f i e d value
f o r (i n t i = 0 ; i < array_size ; i++) {

array [i] = value ;
}

}

void ParVector : : SetToZero ()
{

// Set e n t i r e array to zero
SetToValue (0 . 0) ;

}

i n t ParVector : : Loc2Glob (i n t local_index)
{

// Converts l o c a l index to g l oba l index us ing index map
i f (index_map != NULL) {

r e turn index_map−>Loc2Glob (local_index) ;
} e l s e {

r e turn −1;
}

}

i n t ParVector : : Glob2Loc (i n t global_index)
{

// Converts g l oba l index to l o c a l index us ing index map
i f (index_map != NULL) {

r e turn index_map−>Glob2Loc (global_index) ;
} e l s e {

r e turn −1;
}

}

void ParVector : : ReadExtVec ()
{

std : : ifstream file (”vec to r . vec ”) ;
std : : string line ;

i n t lower_bound = GetLowerBound () ;
i n t upper_bound = GetUpperBound () ;

i n t val1 , dummy ;
double val2 ;

i n t quit ;

// Read past f i r s t few l i n e s o f input f i l e that are not numbers
whi l e (std : : getline (file , line)) {

val1 = 0 ; val2 = 0 . 0 ;
std : : stringstream linestream (line) ;
linestream >> val1 >> dummy >> val2 ;
i f (dummy != 0 && val1 != 0 && val2 != 0 . 0) {

break ;
}

}

// Star t read ing in coo rd ina t e s and i f l o c a l −> add to vec to r

A C++ CODE 40

whi le (std : : getline (file , line))
{

val1 = 0 ; val2 = 0 . 0 ;
std : : stringstream linestream (line) ;
linestream >> val1 >> dummy >> val2 ;
val1 = val1 − 1 ;
i f ((val1 >= lower_bound) && (val1 < upper_bound)) {

AddValueLocal (index_map−>Glob2Loc (val1) , val2) ;
}

}

}

A.5 MatrixCSR.h

s t r u c t MatrixCSR{

i n t nrows ;
i n t nnz ;
i n t * rows ;
i n t * cols ;
double * vals ;

MatrixCSR ()
{

nnz=0;
rows=NULL ;
cols=NULL ;
vals=NULL ;

} ;

MatrixCSR (i n t nnz_in , i n t nrows_in)
{
i f (nnz_in != 0 && nrows_in != 0) {

nnz=nnz_in ;
rows = new in t [nrows_in+1] ;
cols = new in t [nnz] ;
vals = new double [nnz] ;

} e l s e {
nnz =0;
rows=NULL ;
cols=NULL ;
vals=NULL ;

}

} ;

˜MatrixCSR ()
{

i f (nnz !=0) {
de l e t e [] rows ;
d e l e t e [] cols ;
d e l e t e [] vals ;

A C++ CODE 41

}
} ;

void Free () {
i f (nnz !=0) {

de l e t e [] rows ;
d e l e t e [] cols ;
d e l e t e [] vals ;
nnz=0;
rows=NULL ;
cols=NULL ;
vals=NULL ;
}

} ;

} ;

A.6 ParMatrixSparse.h

// MPI vec to r c l a s s − header

#inc lude <mpi . h>
// Input /output
#inc lude <iostream>
#inc lude <fstream>
#inc lude <sstream>
#inc lude <s t r i ng>
#inc lude <vector>

//#inc lude <ParVectorMap . h>
#inc lude <ParVector . h>

// CRS Struct
#inc lude <MatrixCSR . h>

c l a s s ParMatrixSparse

{

pr i va t e :
// Dynamic maps f o r bu i l d i ng matrix
std : : map<int , double> *dynmat_lloc , *dynmat_gloc ;
// S i z e o f l o c a l matrix s l ab
i n t ncols , nrows ;

// CSR s t r u c t s f o r u t i l i s i n g matrix s t r u c tu r e (f o r product)
MatrixCSR *CSR_lloc , *CSR_gloc ;
// Number o f nonzeroes
i n t nnz_lloc , nnz_gloc ;

// Vector maps correspond ing to x and y d i r e c t i o n (or ←↩
vec to r s)

ParVectorMap *x_index_map ;
ParVectorMap *y_index_map ;

// Values d e f i n i n g l o c a l−l o c a l domain
i n t njloc ;
i n t lower_x , lower_y ;
i n t upper_x , upper_y ;

A C++ CODE 42

// MPI proce s s ID (rank) and number o f p r o c e s s e s
i n t ProcID , nProcs ;

// Po inte r s and bu f f e r s f o r s e t t i n g up communications
i n t *VNumRecv , *VNumSend ;
i n t maxRecv , maxSend ;
i n t **Rbuffer , ** Sbuffer ;

// MPI datatype po i n t e r s f o r s t o r i n g der ived datatypes
MPI_Datatype *DTypeRecv , *DTypeSend ;

pub l i c :

// Constructors
ParMatrixSparse () ;
ParMatrixSparse (ParVector* XVec , ParVector* YVec) ;
// Destructor
˜ParMatrixSparse () ;

// Getters
ParVectorMap* GetXMap () { r e turn x_index_map ; } ;
ParVectorMap* GetYMap () { r e turn y_index_map ; } ;
i n t GetXLowerBound () ;

i n t GetXUpperBound () ;
i n t GetYLowerBound () ;

i n t GetYUpperBound () ;
void GetTrueLocalSize (i n t& rs , i n t& cs) {rs=nrows ; cs←↩

=njloc ; } ;
void GetLocalSize (i n t& rs , i n t& cs) {rs=nrows ; cs=←↩

ncols ; } ;
std : : map<int , double>* GetDynMatLocLoc () { r e turn dynmat_lloc←↩

; } ;
std : : map<int , double>* GetDynMatGlobLoc () { r e turn dynmat_gloc←↩

; } ;
MatrixCSR* GetCSRLocLoc () { r e turn CSR_lloc ; } ;
MatrixCSR* GetCSRGlobLoc () { r e turn CSR_gloc ; } ;

// Adders
void AddValueLocal (i n t row , i n t col , double value) ;
void AddValuesLocal (i n t nindex , i n t *rows , i n t *cols , double←↩

* values) ;

// External r eader
void ReadExtMat () ;
// Convert from dynamic map to CSR
void ConvertToCSR () ;

// Find columns to r e c e i v e from remote vec to r p r o c e s s e s
void FindColsToRecv () ;

// Trans fe r ghost va lue s from remote vec to r p r o c e s s e s
void SetupDataTypes () ;

// Test o f communication − f o r debugging
void TestCommunication (ParVector* XVec , ParVector* YVec) ;

// Matrix−vec to r product
void MatVecProd (ParVector* XVec , ParVector* YVec) ;

} ;

A C++ CODE 43

A.7 ParMatrixSparse.cc

// MPI vec to r c l a s s
#inc lude <ParMatrixSparse . h>

ParMatrixSparse : : ParMatrixSparse ()
{

dynmat_lloc = NULL ;
dynmat_gloc = NULL ;

CSR_lloc = NULL ;
CSR_gloc = NULL ;

nnz_lloc = 0 ;
nnz_gloc = 0 ;

ncols = 0 ;
nrows = 0 ;
njloc = 0 ;

lower_x = 0 ;
lower_y = 0 ;
upper_x = 0 ;
upper_y = 0 ;

x_index_map = NULL ;
y_index_map = NULL ;

MPI_Comm_rank (MPI_COMM_WORLD ,&ProcID) ;
MPI_Comm_size (MPI_COMM_WORLD ,&nProcs) ;

VNumRecv = NULL ; VNumSend = NULL ;
Rbuffer = NULL ; Sbuffer = NULL ;

DTypeRecv = NULL ; DTypeSend = NULL ;

}

ParMatrixSparse : : ParMatrixSparse (ParVector* XVec , ParVector* YVec)
{

dynmat_lloc = NULL ;
dynmat_gloc = NULL ;

CSR_lloc = NULL ;
CSR_gloc = NULL ;

nnz_lloc = 0 ;
nnz_gloc = 0 ;

x_index_map = NULL ;
y_index_map = NULL ;

ncols = 0 ;
nrows = 0 ;
njloc = 0 ;

lower_x = 0 ;
lower_y = 0 ;

A C++ CODE 44

upper_x = 0 ;
upper_y = 0 ;

MPI_Comm_rank (MPI_COMM_WORLD ,&ProcID) ;
MPI_Comm_size (MPI_COMM_WORLD ,&nProcs) ;

VNumRecv = NULL ; VNumSend = NULL ;
Rbuffer = NULL ; Sbuffer = NULL ;

DTypeRecv = NULL ; DTypeSend = NULL ;

// Get vec to r map f o r x and y d i r e c t i o n
x_index_map = XVec−>GetVectorMap () ;
x_index_map−>AddUser () ;
y_index_map = YVec−>GetVectorMap () ;
y_index_map−>AddUser () ;

i f (x_index_map != NULL && y_index_map != NULL) {
// Get number o f rows and columns be long ing to proce s s
ncols = x_index_map−>GetGlobalSize () ;
nrows = y_index_map−>GetLocalSize () ;
njloc = x_index_map−>GetLocalSize () ;
// Get upper and lower bounds
lower_x = x_index_map−>GetLowerBound () ;
lower_y = y_index_map−>GetLowerBound () ;
upper_x = x_index_map−>GetUpperBound () ;
upper_y = y_index_map−>GetUpperBound () ;

}

}

ParMatrixSparse : : ˜ ParMatrixSparse ()
{

// I f index map has been de f ined
i f (x_index_map != NULL) {

x_index_map−>DeleteUser () ;
// I f the re are no more u s e r s o f index map , then d e l e t e i t

// i f (x index map−>GetUser () == 0) {
de l e t e x_index_map ;

// }
}
i f (y_index_map != NULL) {

y_index_map−>DeleteUser () ;
// i f (y index map−>GetUser () == 0) {

de l e t e y_index_map ;
// }

}

// I f dynmat has been de f ined
i f (dynmat_lloc != NULL) {

de l e t e [] dynmat_lloc ;
}
i f (dynmat_gloc != NULL) {

de l e t e [] dynmat_gloc ;
}
i f (CSR_lloc != NULL) {

de l e t e CSR_lloc ;
}
i f (CSR_gloc != NULL) {

A C++ CODE 45

de l e t e CSR_gloc ;
}
i f (VNumRecv != NULL) {

de l e t e [] VNumRecv ;
}
i f (VNumSend != NULL) {

de l e t e [] VNumSend ;
}
i f (Rbuffer != NULL) {

i n t i ;
f o r (i=0;i<nProcs ; i++){

i f (Rbuffer [i] != NULL) {
de l e t e [] Rbuffer [i] ;

}
}
de l e t e [] Rbuffer ;

}
i f (Sbuffer != NULL) {

i n t i ;
f o r (i=0;i<nProcs ; i++){

i f (Sbuffer [i] != NULL) {
de l e t e [] Sbuffer [i] ;

}
}
de l e t e [] Sbuffer ;

}

i f (DTypeRecv != NULL) {
i n t i ;
f o r (i=0;i<nProcs ; i++){

i f (DTypeRecv [i] != MPI_DATATYPE_NULL) {
MPI_Type_free(&DTypeRecv [i]) ;

}
}
de l e t e [] DTypeRecv ;

}
i f (DTypeSend != NULL) {

i n t i ;
f o r (i=0;i<nProcs ; i++){

i f (DTypeSend [i] != MPI_DATATYPE_NULL) {
MPI_Type_free(&DTypeSend [i]) ;

}
}
de l e t e [] DTypeSend ;

}

// p r i n t f (”ParMatrixSparse de l e t ed .\n ”) ;

}

i n t ParMatrixSparse : : GetXLowerBound ()
{

// I f index map has been de f ined −−> r e turn maps lower bound
i f (x_index_map != NULL) {

r e turn x_index_map−>GetLowerBound () ;
// Else re turn 0
} e l s e {

r e turn 0 ;
}

A C++ CODE 46

}

i n t ParMatrixSparse : : GetXUpperBound ()
{

// I f index map has been de f ined −−> r e turn maps upper bound
i f (x_index_map != NULL) {

r e turn x_index_map−>GetUpperBound () ;
// Else re turn 0
} e l s e {

r e turn 0 ;
}

}

i n t ParMatrixSparse : : GetYLowerBound ()
{

// I f index map has been de f ined −−> r e turn maps lower bound
i f (y_index_map != NULL) {

r e turn y_index_map−>GetLowerBound () ;
// Else re turn 0
} e l s e {

r e turn 0 ;
}

}

i n t ParMatrixSparse : : GetYUpperBound ()
{

// I f index map has been de f ined −−> r e turn maps upper bound
i f (y_index_map != NULL) {

r e turn y_index_map−>GetUpperBound () ;
// Else re turn 0
} e l s e {

r e turn 0 ;
}

}

void ParMatrixSparse : : AddValueLocal (i n t row , i n t col , double value)
{

std : : map<int , double > : : iterator it ;
// I f l o c a t i o n i s with in l o c a l−l o c a l area then add to l o c a l−←↩

l o c a l dynamic map
i f ((row < nrows && row >= 0) && (col < upper_x && col >= ←↩

lower_x && col >= 0)) {
i f (dynmat_lloc == NULL) {dynmat_lloc = new std : : map<int ,←↩

double> [nrows] ; }
it = dynmat_lloc [row] . find (col) ;
i f (it == dynmat_lloc [row] . end ()) {

dynmat_lloc [row] [col] = value ;
nnz_lloc++;

} e l s e {
it−>second = it−>second + value ;

}
// I f l o c a t i o n i s with in l o c a l−g l oba l area then add to l o c a l−←↩

g l oba l dynamic map

A C++ CODE 47

} e l s e i f ((row < nrows && row >= 0) && (col >= upper_x | | col ←↩
< lower_x) && (col >=0)) {
i f (dynmat_gloc == NULL) {dynmat_gloc = new std : : map<int ,←↩

double> [nrows] ; }
it = dynmat_gloc [row] . find (col) ;
i f (it == dynmat_gloc [row] . end ()) {

dynmat_gloc [row] [col] = value ;
nnz_gloc++;

} e l s e {
it−>second = it−>second + value ;

}
}

}

void ParMatrixSparse : : AddValuesLocal (i n t nindex , i n t *rows , i n t *←↩
cols , double * values)

{

std : : map<int , double > : : iterator it ;

f o r (i n t i = 0 ; i<nindex ; i++) {
AddValueLocal (rows [i] , cols [i] , values [i]) ;

}

}

void ParMatrixSparse : : ConvertToCSR ()
{

i n t count ;
i n t i , j , k ;

double v ;
std : : map<int , double > : : iterator it ;

i f (dynmat_lloc != NULL) {
// Al l o ca t e CSR s t r u c t u r e s
CSR_lloc = new MatrixCSR (nnz_lloc , nrows) ;

// Convert l o c a l−l o c a l to CSR format
count = 0 ; CSR_lloc−>rows [0] = 0 ;
f o r (i = 0 ; i < nrows ; i++) {

CSR_lloc−>rows [i] = count ;
f o r (it = dynmat_lloc [i] . begin () ; it != dynmat_lloc [i] .←↩

end () ; it++) {
j = it−>first ;
v = it−>second ;
CSR_lloc−>vals [count] = v ;
CSR_lloc−>cols [count] = j ;
count++;

}
}
CSR_lloc−>rows [nrows] = nnz_lloc ;

}

i f (dynmat_gloc != NULL) {
CSR_gloc = new MatrixCSR (nnz_gloc , nrows) ;
// Convert g loba l−l o c a l to CSR format
count = 0 ; CSR_gloc−>rows [0] = 0 ;
f o r (i = 0 ; i < nrows ; i++) {

CSR_gloc−>rows [i] = count ;

A C++ CODE 48

f o r (it = dynmat_gloc [i] . begin () ; it != dynmat_gloc [i] .←↩
end () ; it++) {
j = it−>first ;
v = it−>second ;
CSR_gloc−>vals [count] = v ;
CSR_gloc−>cols [count] = j ;
count++;

}
}
CSR_gloc−>rows [nrows] = nnz_gloc ;

}
}

void ParMatrixSparse : : ReadExtMat ()
{

// Reader
std : : ifstream file (”matrix . mat”) ;
std : : string line ;
i n t row , col ;
double value ;
row = 0 ; col = 0 ; value = 0 . 0 ;
i n t quit = 0 ;

// Read past s t a r t o f input f i l e that i s not numbers
whi l e (std : : getline (file , line)) {

row = 0 ; col = 0 ; value = 0 . 0 ;
std : : stringstream linestream (line) ;
linestream >> row >> col >> value ;
i f (row != 0 && col != 0 && value != 0 . 0) {

break ;
}

}

// Read in va lue s from input f i l e and add to matrix
whi l e (std : : getline (file , line)) {

std : : stringstream linestream (line) ;
linestream >> row >> col >> value ;

row = row − 1 ; col = col −1;
i f ((row >= lower_y && row < upper_y) && (col < ncols)) {

AddValueLocal (y_index_map−>Glob2Loc (row) , col , value) ;
}

}

}

void ParMatrixSparse : : FindColsToRecv ()
{

std : : map<int , int> Rrows ;
std : : map<int , int> Srows ;
std : : map<int , int > : : iterator vit ;
std : : map<int , double > : : iterator mit ;
i n t i , j , k ;
i n t count , count1 ; count = 0 ; count1 = 0 ;

i n t nRecv ;
MPI_Comm_rank (MPI_COMM_WORLD ,&ProcID) ;
MPI_Comm_size (MPI_COMM_WORLD ,&nProcs) ;

A C++ CODE 49

// I n i t i a l i s e vec to r conta in ing number o f e n t r i e s to send and ←↩
r e c e i v e from each proce s s

VNumRecv = new in t [nProcs] ;
f o r (i=0;i<nProcs ; i++) {VNumRecv [i]=0;}
VNumSend = new in t [nProcs] ;
f o r (i=0;i<nProcs ; i++) {VNumSend [i]=0;}

MPI_Request *Rreqs , *Sreqs ;
MPI_Status status , *Rstat , *Sstat ;
i n t tag1 , tag2 ; tag1 = 0 ; tag2 = 1 ;
i n t Rtag , Stag ;
Rtag = 0 ; Stag = 1 ;

i n t maxRecv , maxSend ;

// ///

i f (dynmat_gloc != NULL) {
// Figure out which rows from remote ve c to r s are needed and ←↩

to which proce s s they belong
f o r (i = 0 ; i<nrows ; i++) {

f o r (mit = dynmat_gloc [i] . begin () ; mit != dynmat_gloc [i←↩
] . end () ; mit++) {
j = mit−>first ;
vit = Rrows . find (j) ;
i f (vit == Rrows . end ()) {

Rrows [j] = x_index_map−>GetOwner (j) ;
VNumRecv [Rrows [j]]= VNumRecv [Rrows [j]]+1 ;
count++;

}
}

}
nRecv = count ;

} e l s e {
f o r (i = 0 ; i < nProcs ; i++) {

VNumRecv [i] = 0 ;
}

}

// MPI non−b lock ing r eque s t s and s t a t u s e s
Rreqs = new MPI_Request [nProcs −1] ;
Sreqs = new MPI_Request [nProcs −1] ;
Rstat = new MPI_Status [nProcs −1] ;
Sstat = new MPI_Status [nProcs −1] ;

// Post sends and r e c e i v e s f o r the number o f e n t r i e s to send and←↩
r e c e i v e from each proce s s

count = 0 ; maxRecv = 0 ; maxSend = 0 ;
f o r (i = 0 ; i < nProcs ; i++) {

i f (VNumRecv [i] > maxRecv) {maxRecv = VNumRecv [i] ; }
i f (i != ProcID) {

MPI_Isend(&VNumRecv [i] , 1 , MPI_INT , i , tag1 , MPI_COMM_WORLD ,&←↩
Sreqs [count]) ;

MPI_Irecv(&VNumSend [i] , 1 , MPI_INT , i , tag1 , MPI_COMM_WORLD ,&←↩
Rreqs [count]) ;

count++;
}

}

// Wait f o r r e c e i v e s to f i n i s h

A C++ CODE 50

MPI_Waitall (nProcs−1,Rreqs , Rstat) ;
// Find max number to send

f o r (i = 0 ; i < nProcs ; i++) {
i f (VNumSend [i] > maxSend) {maxSend = VNumSend [i] ; }
}

// I n i t i a l i s a t i o n o f send and r e c e i v e bu f f e r s
Rbuffer = new in t * [nProcs] ;
Sbuffer = new in t * [nProcs] ;
f o r (i = 0 ; i < nProcs ; i++) {Rbuffer [i] = NULL ;}
f o r (i = 0 ; i < nProcs ; i++) {Sbuffer [i] = NULL ;}

// Post sends f o r row i nd i c e s
// MPI non−b lock ing r eque s t s and s t a t u s e s
count = 0 ; count1 = 0 ;
f o r (i = 0 ; i < nProcs ; i++) {

count = 0 ;
i f (ProcID != i) {

Sbuffer [i] = new in t [VNumRecv [i]] ;
// Load Sbu f f e r with column nums needed f o r g iven ←↩

proce s s and send to proce s s
f o r (vit = Rrows . begin () ; vit != Rrows . end () ; vit++){

i f (vit−>second == i) {
Sbuffer [i] [count] = vit−>first ;
count++;

}
}
MPI_Isend (Sbuffer [i] , VNumRecv [i] , MPI_INT , i , tag1 ,←↩

MPI_COMM_WORLD ,&Sreqs [count1]) ;
count1 ++;

} e l s e {
Sbuffer [i] = new in t [1] ; Sbuffer [i] [0] = 0 ;

}
}

count1 = 0 ;
f o r (i = 0 ; i< nProcs ; i++) {

i f (ProcID != i) {
Rbuffer [i] = new in t [VNumSend [i]] ;
MPI_Irecv (Rbuffer [i] , VNumSend [i] , MPI_INT , i , tag1 ,←↩

MPI_COMM_WORLD ,&Rreqs [count1]) ;
count1++;

} e l s e {
Rbuffer [i] = new in t [1] ; Rbuffer [i] [0] = 0 ;

}
}

// Wait f o r r e c e i v e s to f i n i s h
MPI_Waitall (nProcs−1,Rreqs , Rstat) ;

d e l e t e [] Rreqs ;
d e l e t e [] Sreqs ;
d e l e t e [] Rstat ;
d e l e t e [] Sstat ;

}

void ParMatrixSparse : : SetupDataTypes ()
{

A C++ CODE 51

i n t i , j , k ;
i n t count , *blength , *displac ;

// i n t MPI Type indexed (i n t count , i n t * a r r ay o f b l o ck l eng th s ,
// i n t * a r r a y o f d i s p l , MPI Datatype old , MPI Datatype ←↩

new) ;
// Sending :
// count = VNumSend [i] , a r r a y o f b l o c k l e n g t h s = vecto r o f ones ←↩

o f l ength count ,
// a r r a y o f d i s p l = vecto r o f d i sp lacement found from ←↩

x index map−>Glob2Loc o f Rbuf fer [i] [j] ,
// o ld = MPI DOUBLE, new = DTypeSend [i]
// Rece iv ing :
// count = VNumRecv [i] , a r r a y o f b l o c k l e n g t h s = vecto r o f ones ←↩

o f l ength count ,
// a r r a y o f d i s p l = vecto r o f d i sp lacements found from ←↩

x index map−>Glob2Loc o f Sbu f f e r [i] [j] ,
// o ld = MPI DOUBLE, new = DTypeRecv [i]

DTypeSend = new MPI_Datatype [nProcs] ;
DTypeRecv = new MPI_Datatype [nProcs] ;

f o r (i = 0 ; i < nProcs ; i++) {
count = VNumSend [i] ;
blength = new in t [count] ;
displac = new in t [count] ;
// Set up ar rays o f b l o ck l eng th s and di sp lacements
f o r (j = 0 ; j < count ; j++) {

blength [j] = 1 ;
displac [j] = x_index_map−>Glob2Loc (Rbuffer [i] [j]) ;

}
// I n i t i a l i s e send datatype and commit
MPI_Type_indexed (count , blength , displac , MPI_DOUBLE , &←↩

DTypeSend [i]) ;
MPI_Type_commit(&DTypeSend [i]) ;

count = VNumRecv [i] ;
blength = new in t [count] ;
displac = new in t [count] ;
// Set up ar rays o f b l o ck l eng th s and di sp lacements
f o r (j = 0 ; j < count ; j++) {

blength [j] = 1 ;
displac [j] = Sbuffer [i] [j] ;

}
// I n i t i a l i s e recv datatype and commit
MPI_Type_indexed (count , blength , displac , MPI_DOUBLE , &←↩

DTypeRecv [i]) ;
MPI_Type_commit(&DTypeRecv [i]) ;

}

de l e t e [] blength ;
d e l e t e [] displac ;

}

void ParMatrixSparse : : TestCommunication (ParVector* XVec , ParVector* ←↩
YVec)

{

A C++ CODE 52

// TEST OF COMMUNICATIONS FOR DEBUGGING

in t i , j , k , l , ng ;
i n t sender , receiver ;
sender = 2 ; receiver = 1 ;

MPI_Status Rstat ;

double *rBuf , *sBuf ;
// rBuf = new double [VNumRecv [sender]] ;

k = XVec−>GetLocalSize () ;
l = XVec−>GetGlobalSize () ;
rBuf = new double [l] ;
f o r (i=0;i<l ; i++){rBuf [i] = 0 ;}
sBuf = XVec−>GetArray () ;

i f (ProcID == sender) {
// f o r (i =0; i<k ; i++){ p r i n t f (”sBuf [%d] = %f \n” , i , sBuf [i]) ;}

MPI_Send (sBuf , 1 , DTypeSend [receiver] , receiver , 1 ,←↩
MPI_COMM_WORLD) ;

printf (”Sending complete .\n”) ;
} e l s e i f (ProcID == receiver) {

// f o r (i =0; i<l ; i++){ p r i n t f (”rBuf [%d] = %f \n” , i , rBuf [i]) ;}
MPI_Recv (rBuf , 1 , DTypeRecv [sender] , sender , 1 , MPI_COMM_WORLD ,&←↩

Rstat) ;
// f o r (i =0; i<l ; i++){ p r i n t f (”rBuf [%d] = %f \n” , i , rBuf [i]) ;}

printf (”Rece iv ing complete .\n”) ;
}

i f (ProcID == sender) { f o r (i=0;i<k ; i++){printf (”sBuf [%d] = %f \n” ,←↩
i , sBuf [i]) ;}}

MPI_Barrier (MPI_COMM_WORLD) ;
i f (ProcID == receiver) { f o r (i=0;i<l ; i++){printf (”rBuf [%d] = %f \n←↩

” ,i , rBuf [i]) ;}}

// d e l e t e [] rBuf ;
// d e l e t e [] sBuf ;

}

void ParMatrixSparse : : MatVecProd (ParVector* XVec , ParVector* YVec)
{

i n t i , j , k , l ;
i n t llength , glength ;
i n t count ; count = 0 ;
i n t count2 ; count2 = 0 ;
i n t tag1 ; tag1 = 0 ;
double v ; v = 0 . 0 ;

MPI_Request *Rreqs , *Sreqs ;
MPI_Status *Rstat , *Sstat ;

double *rBuf , *sBuf ;
// Get l o c a l and g l oba l l ength
llength = XVec−>GetLocalSize () ;
glength = XVec−>GetGlobalSize () ;
// Se t t i ng up recv and send bu f f e r s
rBuf = new double [glength] ;
f o r (i=0;i<glength ; i++){rBuf [i] = 0 ;}

A C++ CODE 53

sBuf = XVec−>GetArray () ;

// MPI non−b lock ing r eque s t s and s t a t u s e s
Rreqs = new MPI_Request [nProcs −1] ;
Sreqs = new MPI_Request [nProcs −1] ;
Rstat = new MPI_Status [nProcs −1] ;
Sstat = new MPI_Status [nProcs −1] ;

// Post sends and r e c e i v e s each proce s s
count = 0 ;
f o r (i = 0 ; i < nProcs ; i++) {

i f (i != ProcID) {
i f (DTypeSend [i] != MPI_DATATYPE_NULL) {

MPI_Isend (sBuf , 1 , DTypeSend [i] , i , tag1 , MPI_COMM_WORLD←↩
,&Sreqs [count]) ;

} e l s e {
Sreqs [count] = MPI_REQUEST_NULL ;

}
i f (DTypeRecv [i] != MPI_DATATYPE_NULL) {

MPI_Irecv (rBuf , 1 , DTypeRecv [i] , i , tag1 , MPI_COMM_WORLD←↩
,&Rreqs [count]) ;

} e l s e {
Rreqs [count] = MPI_REQUEST_NULL ;

}
count++;

}
}

#i f n d e f OPENMP

// Ca lcu la te l o c a l−l o c a l product
i f (CSR_lloc != NULL) {

f o r (i = 0 ; i < nrows ; i++){
f o r (k = CSR_lloc−>rows [i] ; k < CSR_lloc−>rows [i+1] ; k++)←↩

{
j = x_index_map−>Glob2Loc (CSR_lloc−>cols [k]) ;
v = CSR_lloc−>vals [k]* sBuf [j] ;
YVec−>AddValueLocal (i , v) ;

}
}

}
// Wait f o r r e c e i v i n g o f ghos tva lue s to complete
MPI_Waitall (nProcs−1,Rreqs , Rstat) ;

// Ca l cu la te l o c a l−g l oba l product
i f (CSR_gloc != NULL) {

f o r (i = 0 ; i < nrows ; i++){
f o r (k = CSR_gloc−>rows [i] ; k < CSR_gloc−>rows [i+1] ; k++)←↩

{
j = CSR_gloc−>cols [k] ;
v = CSR_gloc−>vals [k]* rBuf [j] ;
YVec−>AddValueLocal (i , v) ;

}
}

}

#e l s e
// std : : cout << ”OpenMP run ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ” << std : : endl ;

#pragma omp parallel de f au l t (shared) p r i va t e (i , j , k , v)
{ // Star t omp p a r a l l e l r eg i on

// Ca lcu la te l o c a l−l o c a l product
i f (CSR_lloc != NULL) {

A C++ CODE 54

#pragma omp f o r schedule (guided) // schedu le (runtime)
f o r (i = 0 ; i < nrows ; i++){

f o r (k = CSR_lloc−>rows [i] ; k < CSR_lloc−>rows [i←↩
+1] ; k++){
j = x_index_map−>Glob2Loc (CSR_lloc−>cols [k])←↩

;
v = CSR_lloc−>vals [k]* sBuf [j] ;
YVec−>AddValueLocal (i , v) ;

}
}

}
// Wait f o r r e c e i v i n g o f ghos tva lue s to complete
#pragma omp barrier

#pragma omp master

{
MPI_Waitall (nProcs−1,Rreqs , Rstat) ;

}
#pragma omp barrier

// Ca lcu la te l o c a l−g l oba l product
i f (CSR_gloc != NULL) {

#pragma omp f o r schedule (guided) // schedu le (runtime)
f o r (i = 0 ; i < nrows ; i++){

f o r (k = CSR_gloc−>rows [i] ; k < CSR_gloc−>rows [i←↩
+1] ; k++){
j = CSR_gloc−>cols [k] ;
v = CSR_gloc−>vals [k]* rBuf [j] ;
YVec−>AddValueLocal (i , v) ;

}
}

}

} // End o f omp p a r a l l e l r eg i on
#end i f

d e l e t e [] rBuf ;
d e l e t e [] Rreqs ;

d e l e t e [] Sreqs ;
d e l e t e [] Rstat ;
d e l e t e [] Sstat ;

}

A.8 Timing driver: ParaMatVecTiming.cc

// // MPI l i b r a r y
#inc lude <mpi . h>
// IO streams
#inc lude <s t d i o . h>
#inc lude <iostream>
// Maths l i b r a r y
#inc lude <math . h>
// C Standard l i b r a r y
#inc lude <s t d l i b . h>
// St r ing l i b r a r y
#inc lude <s t r i n g . h>
// STL Map
#inc lude <map>

A C++ CODE 55

// MPI Vector c l a s s
//#inc lude <ParVector . h>
// MPI Sparse Matrix c l a s s
#inc lude <ParMatrixSparse . h>

i n t main (i n t argc , char *argv [])
{

// Pr in t ing sw i t che s
i n t printEnds = 1 , printMids = 1 ;

// Var iab l e s
i n t i , j , k ;
i n t span , lower_b , upper_b ;

// Dec la ra t i on o f MPI va r i a b l e s and cons tant s
const i n t tag1 = 0 , tag2 = 1 ;
i n t rank , size , intBuf1 , intBuf2 , number ;
double doubBuf1 , start , finish , time ;
MPI_Status status ;

// Checking f o r commandline input
i n t commMethod = 0 ;
i n t probSize = 10 ;
i n t maxCount = 1 ;
i f (argc>=2){

f o r (i n t i = 0 ; i<argc ; i++) {
i f (strcasecmp (argv [i] , ”−comm”)==0) {

commMethod = atoi (argv [i+1]) ;
}
i f (strcasecmp (argv [i] , ”−s i z e ”)==0) {

probSize = atoi (argv [i+1]) ;
}

i f (strcasecmp (argv [i] , ”−count ”)==0) {
maxCount = atoi (argv [i+1]) ;

}
}

}

// MPI i n i t i a l i s a t i o n
#i f n d e f OPENMP

MPI_Init(&argc ,&argv) ;
MPI_Comm_rank (MPI_COMM_WORLD , &rank) ;
MPI_Comm_size (MPI_COMM_WORLD , &size) ;
i f (rank == 0) {std : : cout << ”Ordinary run ! ! ! ! ! ! ! ! ! ! ! ” << std : :←↩

endl ;}
#e l s e

i n t dummy ; dummy = 0 ;
MPI_Init_thread(&argc ,&argv , MPI_THREAD_FUNNELED ,&dummy) ;
MPI_Comm_rank (MPI_COMM_WORLD , &rank) ;
MPI_Comm_size (MPI_COMM_WORLD , &size) ;
i f (rank == 0) {std : : cout << ”OpenMP run ! ! ! ! ! ! ! ! ! ! ! ! ! ” << std : :←↩

endl ;}
#end i f

// I n i t i a l i s a t i o n
span = in t (floor (double (probSize) / double (size))) ;

i f (rank == size−1) {
lower_b = rank*span ;
upper_b = probSize ;

A C++ CODE 56

} e l s e {
lower_b = rank*span ;
upper_b = (rank+1)*span ;

}
i f (rank==0) {

printf (”−−\n”)←↩
;

printf (”−−−− Pa r a l l e l matrix−vec to r product −−−−\n”)←↩
;

printf (”−−−− %3d pro c e s s e s − %6d x %6d matrix −−−−\n” , size ,←↩
probSize , probSize) ;

printf (”−−\n”)←↩
;

}
MPI_Barrier (MPI_COMM_WORLD) ;
printf (”Proc . %d − Lower bound = %d − Upper bound = %d \n” , rank ,←↩

lower_b , upper_b) ;

// INITIALISATION OF XVECTOR
//ParVector XVector = ParVector (MPICOMMWORLD, lower b , upper b) ;
ParVector *XVector = new ParVector (MPI_COMM_WORLD , lower_b ,←↩

upper_b) ;
XVector−>ReadExtVec () ;
i f (rank == 0) {printf (”XVector i n i t i a l i s e d and read in .\n”) ;}

// INITIALISATION OF YVECTOR
//ParVector YVector = ParVector (MPICOMMWORLD, lower b , upper b) ;
ParVector *YVector = new ParVector (MPI_COMM_WORLD , lower_b ,←↩

upper_b) ;
YVector−>SetToZero () ;
i f (rank == 0) {printf (”YVector i n i t i a l i s e d and zeroed .\n”) ;}

// INITIALISATION OF AMATRIX
ParMatrixSparse *AMatrix = new ParMatrixSparse (XVector , YVector) ;
i f (rank == 0) {printf (”AMatrix i n i t i a l i s e d .\n”) ;}

AMatrix−>ReadExtMat () ;
i f (rank == 0) {printf (”AMatrix read in .\n”) ;}

// CONVERTING TO CSR
AMatrix−>ConvertToCSR () ;
i f (rank == 0) {printf (”AMatrix converted to CSR format .\n”) ;}

// Setup communications
AMatrix−>FindColsToRecv () ;
i f (rank == 0) {printf (”AMatrix : Communications mapped .\n”) ;}

// Setup datatypes
AMatrix−>SetupDataTypes () ;
i f (rank == 0) {printf (”AMatrix : Datatypes c reated .\n”) ;}

MPI_Barrier (MPI_COMM_WORLD) ;

// Matrix − vec to r product
i f (rank == 0) {printf (”AMatrix : MatVecProd i n i t i a l i s e d .\n”) ;}
start = MPI_Wtime () ;
f o r (i = 0 ; i < maxCount ; i++){

// i f (rank == 0) { p r i n t f (” i = %d\n” , i) ;}
AMatrix−>MatVecProd (XVector , YVector) ;

}
finish = MPI_Wtime () ; time = finish−start ;
i f (rank == 0) {

B MATLAB CODE 57

printf (”−−\n”)←↩
;

printf (”AMatrix : MatVecProd completed in %f seconds .\n” , time←↩
) ;

printf (”−−\n”)←↩
;

}

MPI_Barrier (MPI_COMM_WORLD) ;

d e l e t e XVector ;
d e l e t e YVector ;
d e l e t e AMatrix ;

MPI_Finalize () ;

r e turn 0 ;
}

B Matlab code

B.1 GenBandedMatVec.m

%% Generate Random Banded Vector
c l e a r a l l ; c l o s e a l l ; c l c ;

N = 64*5000
M = N ;
minv = −100; maxv = 100 ;

vector = minv + (maxv−minv) .* rand (N , 1) ;
vector = spar s e (vector) ;

filename = [' vec to r ' num2str (N) ' matlab .mat '] ;
save (filename , ' vec to r ') ;
filename = [' vec to r ' num2str (N) ' . vec '] ;
mmwrite (filename , vector , ' ' , ' r e a l ' , 5)

%% Generate Contro l l ed Banded Random Matrix
matrix = spar s e (M , N) ;
% maxspread = c e i l (l og (N)+log (M))
maxspread = c e i l (log10 (N) ˆ log10 (M))

% randnum = randi (10) ;
randnum = 10 ;
f o r i = 1 : M ;

f o r j = 1 : randnum
di = randi ([− maxspread , maxspread]) ;
dj = randi ([− maxspread , maxspread]) ;
posi = min(max(1 , i+di) , M) ;
posj = min(max(1 , i+dj) , N) ;
matrix (i , posj) = minv + (maxv−minv) .* rand () ;

end
end
%spy (matrix) ;

B MATLAB CODE 58

filename = ['matrix ' num2str (N) ' band matlab .mat '] ;
save (filename , 'matrix ') ;
filename = ['matrix ' num2str (N) 'band .mat '] ;
mmwrite (filename , matrix)

r e turn
%% Check vec to r and matrix

N = 8*5000;
M = 8*5000;

filename = [' vec to r ' num2str (N) ' matlab .mat '] ;
load (filename) ;
% f u l l (vec to r)

filename = ['matrix ' num2str (N) ' band matlab .mat '] ;
load (filename) ;
% f u l l (matrix)
f i g u r e (1) ;
s e t (gca , ' FontSize ' , 22) ;
spy (matrix) ;
t i t l e ('Banded − 40k x 40k ') ;

% matrix* vec to r

B.2 GenTriBandedMatVec.m

%% Generate Random Tribanded Vector
c l e a r a l l ; c l o s e a l l ; c l c ;

N = 32*5000
M = N ;
minv = −100; maxv = 100 ;

%% Generate Contro l l ed Tri−Banded Random Matrix
matrix = spar s e (M , N) ;
% maxspread = c e i l (l og (N)+log (M))
maxspread = c e i l (log10 (N) ˆ log10 (M))

% randnum = randi (10) ;
randnum = 10 ;
randnum2 = 5 ;
displ = c e i l (5* l og10 (N) * s q r t (N))
maxspread2 = c e i l (maxspread/ log10 (N))
f o r i = 1 : M ;

i f (mod (i , 10000)==0)
i

end ;
f o r j = 1 : randnum

di = randi ([− maxspread , maxspread]) ;
dj = randi ([− maxspread , maxspread]) ;
posj = min(max(1 , i+dj) , N) ;
matrix (i , posj) = minv + (maxv−minv) .* rand () ;

end
f o r j = 1 : randnum2

di = randi ([− maxspread2 , maxspread2]) ;
dj = randi ([− maxspread2 , maxspread2]) ;

B MATLAB CODE 59

posj = min(max(1 , i+displ+dj) , N) ;
matrix (i , posj) = minv + (maxv−minv) .* rand () ;
posj = min(max(1 , i−displ+dj) , N) ;
matrix (i , posj) = minv + (maxv−minv) .* rand () ;

end
end

spy (matrix) ;

filename = ['matrix ' num2str (N) ' tr iband mat lab .mat '] ;
save (filename , 'matrix ') ;
filename = ['matrix ' num2str (N) ' t r iband .mat '] ;
mmwrite (filename , matrix)

r e turn
%% Check vec to r and matrix

N = 32*5000;
M = 32*5000;

filename = [' vec to r ' num2str (N) ' matlab .mat '] ;
load (filename) ;
% f u l l (vec to r)

filename = ['matrix ' num2str (N) ' tr iband mat lab .mat '] ;
load (filename) ;
% f u l l (matrix)
f i g u r e (1) ;
s e t (gca , ' FontSize ' , 22) ;
spy (matrix) ;
t i t l e ('Tri−banded − 160k x 160k ') ;

% matrix* vec to r

	Introduction
	Matrix-vector product
	Sparsity
	Triplet format
	Compressed Sparse Row [CSR] format

	Implementation
	Parallel vector
	ParVectorMap: Vector index map
	ParVector: Vector class

	Parallel sparse matrix
	MatrixCSR: CSR struct
	ParMatrixSparse: Matrix class

	Organisation of communications
	Exchanging message sizes and indices
	Derived datatype: MPI_Type_indexed

	Matrix-vector product
	Non-blocking communications

	MPI-OpenMP Hybrid

	Results
	Generating input
	Timing runs
	TopOpt Cluster
	Pure MPI
	Hybrid MPI-OpenMP

	Sun Studio Analyzer

	Conclusion
	Further work
	C++ code
	ParVectorMap.h
	ParVectorMap.cc
	ParVector.h
	ParVector.cc
	MatrixCSR.h
	ParMatrixSparse.h
	ParMatrixSparse.cc
	Timing driver: ParaMatVecTiming.cc

	Matlab code
	GenBandedMatVec.m
	GenTriBandedMatVec.m

