13 research outputs found

    A low-cost uniaxial cell stretcher for six parallel wells

    Get PDF
    Cells in the lungs, the heart, and numerous other organs, are constantly exposed to dynamic forces and deformations. To mimic these dynamic mechanical loading conditions and to study the resulting cellular responses such as morphological changes or the activation of biochemical signaling pathways, cells are typically seeded on flexible 2D substrates that are uniaxially or biaxially stretched. Here, we present an open-source cell stretcher built from parts of an Anet A8 3D printer. The cell stretcher is controlled by a fully programmable open-source software using GCode and Python. Up to six flexible optically clear substrates can be stretched simultaneously, allowing for comparative multi-batch biological studies including microscopic image analysis. The cell yield from the cell culture area of 4 cm2 per substrate is sufficient for Western-blot protein analysis. As a proof-of-concept, we study the activation of the Yes-associated protein (YAP) mechanotransduction pathway in response to increased cytoskeletal tension induced by uniaxial stretching of epithelial cells. Our data support the previously observed activation of the YAP transcription pathway by stretch-induced increase in cytoskeletal tension and demonstrate the suitability of the cell stretcher to study complex mechano-biological processes

    Cryopreservation impairs 3-D migration and cytotoxicity of natural killer cells

    Get PDF
    Abstract Natural killer (NK) cells are important effector cells in the immune response to cancer. Clinical trials on adoptively transferred NK cells in patients with solid tumors, however, have thus far been unsuccessful. As NK cells need to pass stringent safety evaluation tests before clinical use, the cells are cryopreserved to bridge the necessary evaluation time. Standard degranulation and chromium release cytotoxicity assays confirm the ability of cryopreserved NK cells to kill target cells. Here, we report that tumor cells embedded in a 3-dimensional collagen gel, however, are killed by cryopreserved NK cells at a 5.6-fold lower rate compared to fresh NK cells. This difference is mainly caused by a 6-fold decrease in the fraction of motile NK cells after cryopreservation. These findings may explain the persistent failure of NK cell therapy in patients with solid tumors and highlight the crucial role of a 3-D environment for testing NK cell function

    micrObs – A customizable time-lapse camera for ecological studies

    Get PDF
    International audienceCamera traps for motion-triggered or continuous time-lapse recordings are readily available on the market. For demanding applications in ecology and environmental sciences, however, commercial systems often lack flexibility to freely adjust recording time intervals, suffer from mechanical component wear, and can be difficult to combine with auxiliary sensors such as GPS, weather stations, or light sensors. We present a robust time-lapse camera system that has been operating continuously since 2013 under the harsh climatic conditions of the Antarctic and Sub-Antarctic regions. Thus far, we have recorded over one million images with individual cameras. The system consumes 122 mW of power in standby mode and captures up to 200,000 high-resolution (16 MPix) images without maintenance such as battery or image memory replacement. It offers time-lapse intervals between 2 s and 1 day, low-light or night-time power saving, and data logging capabilities for additional inputs such as GPS and weather data

    Biologging of emperor penguins – attachment techniques and associated deployment performance

    Get PDF
    International audienceAbstract An increasing number of marine animals are equipped with biologgers, to study their physiology, behaviour and ecology, often for conservation purposes. To minimise the impacts of biologgers on the animals’ welfare, the Refinement principle from the Three Rs framework ( Replacement, Reduction, Refinement ) urges to continuously test and evaluate new and updated biologging protocols. Here, we propose alternative and promising techniques for emperor penguin ( Aptenodytes forsteri ) capture and on-site logger deployment that aim to mitigate the potential negative impacts of logger deployment on these birds. We equipped adult emperor penguins for short-term (GPS, Time-Depth Recorder (TDR)) and long-term ( i . e . planned for one year) deployments (ARGOS platforms, TDR), as well as juvenile emperor penguins for long-term deployments (ARGOS platforms) in the Weddell Sea area where they had not yet been studied. We describe and qualitatively evaluate our protocols for the attachment of biologgers on-site at the colony, the capture of the animals and the recovery of the devices after deployment. We report unprecedented recaptures of long-term equipped adult emperor penguins (50% of equipped individuals recaptured after 290 days). Our data demonstrate that the traditional technique of long-term attachment by gluing the biologgers directly to the back feathers is detrimental to the birds. It causes excessive feather breakage and the loss of the devices at an early stage. We therefore propose an alternative method of attachment for back-mounted devices. This technique led to successful year-round deployments on 37.5% of the equipped juveniles. Finally, we also disclose the first deployments of leg-bracelet mounted TDRs on emperor penguins. Our findings highlight the importance of monitoring potential impacts of biologger deployments on the animals and the need to remain critical towards established and new protocols

    Attachment of biologging devices on emperor penguins: links to additional files

    No full text
    Adult and juvenile emperor penguins (Aptenodytes forsteri) were fitted with different type of loggers (GPS, TDR, ARGOS) at Atka Bay colony (Queen Maud Land), Weddell Sea coast, in summer season 2017-2018 & 2018-2019. Capture, handling and deployment techniques are shared through several additional files

    Cryopreservation impairs 3-D migration and cytotoxicity of natural killer cells

    No full text
    Cryopreservation is standard protocol prior to using NK cells in immunotherapy. Here the authors show that cryopreservation substantially reduces the clinical utility of these cells owing to a defect in their motility, an effect that might account for failure to treat some cancers with NK cell immunotherapy

    Remote sensing of emperor penguin abundance and breeding success

    No full text
    Emperor penguins (Aptenodytes forsteri) are under increasing environmental pressure. Monitoring colony size and trends of this Antarctic seabird relies primarily on satellite imagery recorded near the end of the breeding season, when illumination levels are sufficient to capture images, but colony occupancy is highly variable. To correct population estimates for this variability, we develop a phenological model that accurately predicts the number of breeding pairs and fledging chicks, as well as key phenological events such as arrival, hatching and foraging times, from as few as six data points from a single season. The ability to extrapolate occupancy from sparse data makes the model particularly useful for monitoring remotely sensed animal colonies where ground-based population estimates are very rare or unavailable. Teaser The Emperor penguin becomes the Southern Ocean's canary in a coal mine through remote sensing its annual breeding success

    Remote sensing of emperor penguin abundance and breeding success

    No full text
    Emperor penguins (Aptenodytes forsteri) are under increasing environmental pressure. Monitoring colony size and population trends of this Antarctic seabird relies primarily on satellite imagery recorded near the end of the breeding season, when light conditions levels are sufficient to capture images, but colony occupancy is highly variable. To correct population estimates for this variability, we develop a phenological model that can predict the number of breeding pairs and fledging chicks, as well as key phenological events such as arrival, hatching and foraging times, from as few as six data points from a single season. The ability to extrapolate occupancy from sparse data makes the model particularly useful for monitoring remotely sensed animal colonies where ground-based population estimates are rare or unavailable.Peer reviewe
    corecore