19 research outputs found

    Two adjacent nuclear factor-binding domains activate expression from the human PRNP promoter

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The transmissible spongiform encephalopathies (TSEs) comprise a group of fatal degenerative neurological diseases in humans and other mammals. After infection, the cellular prion protein isoform PrP<sup>C </sup>is converted to the pathological PrP<sup>SC </sup>scrapie isoform. The continued conversion of PrP<sup>C </sup>to PrP<sup>SC </sup>requires <it>de novo </it>endogenous PrP synthesis for disease progression. The human prion protein gene (<it>PRNP</it>) promoter was therefore investigated to identify regulatory elements that could serve as targets for therapeutic intervention.</p> <p>Findings</p> <p>The human prion protein gene (<it>PRNP</it>) promoter from position -1593 to +134 relative to the putative transcriptional start site (+1) was analyzed by transient transfection in HeLa cells. Deletions from the 5' end between positions -1593 and -232 yielded little change in activity. A further 5' deletion at position -90 resulted in a decline in activity to a level of about 30% of the full-length value. DNase I footprinting of the region between positions -259 and +2 identified two adjacent protected domains designated as prpA (-116 to -143) and prpB (-147 to -186). Internal deletions combined with mobility shift electrophoresis and methylation interference assays indicated the presence of sequence specific nuclear factor complexes that bind to the prpA and prpB domains and activate expression from the human <it>PRNP </it>promoter in an additive fashion.</p> <p>Conclusion</p> <p>Results from transient transfection, DNase I footprinting, mobility shift electrophoresis, and methylation interference experiments suggest that two DNase I protected domains designated as prpA and prpB are binding sites for as yet unidentified regulatory factors that independently activate expression from the <it>PRNP </it>promoter.</p

    BORIS/CTCFL-mediated transcriptional regulation of the hTERT telomerase gene in testicular and ovarian tumor cells

    Get PDF
    Telomerase activity, not detectable in somatic cells but frequently activated during carcinogenesis, confers immortality to tumors. Mechanisms governing expression of the catalytic subunit hTERT, the limiting factor for telomerase activity, still remain unclear. We previously proposed a model in which the binding of the transcription factor CTCF to the two first exons of hTERT results in transcriptional inhibition in normal cells. This inhibition is abrogated, however, by methylation of CTCF binding sites in 85% of tumors. Here, we showed that hTERT was unmethylated in testicular and ovarian tumors and in derivative cell lines. We demonstrated that CTCF and its paralogue, BORIS/CTCFL, were both present in the nucleus of the same cancer cells and bound to the first exon of hTERT in vivo. Moreover, exogenous BORIS expression in normal BORIS-negative cells was sufficient to activate hTERT transcription with an increasing number of cell passages. Thus, expression of BORIS was sufficient to allow hTERT transcription in normal cells and to counteract the inhibitory effect of CTCF in testicular and ovarian tumor cells. These results define an important contribution of BORIS to immortalization during tumorigenesi

    A Novel Mechanism for CTCF in the Epigenetic Regulation of Bax in Breast Cancer Cells

    Get PDF
    Wepreviously reported the association of elevated levels of themultifunctional transcription factor, CCCTC binding factor (CTCF), in breast cancer cells with the specific anti-apoptotic function of CTCF. To understand the molecularmechanisms of this phenomenon, we investigated regulation of the human Bax gene by CTCF in breast and non-breast cells. Two CTCF binding sites (CTSs) within the Bax promoter were identified. In all cells, breast and non-breast, active histone modifications were present at these CTSs, DNA harboring this region was unmethylated, and levels of Bax mRNA and protein were similar. Nevertheless, up-regulation of Bax mRNA and protein and apoptotic cell deathwere observed only in breast cancer cells depleted of CTCF.We proposed that increased CTCF binding to the Bax promoter in breast cancer cells, by comparison with non-breast cells, may be mechanistically linked to the specific apoptotic phenotype in CTCF-depleted breast cancer cells. In this study, we show that CTCF binding was enriched at the Bax CTSs in breast cancer cells and tumors; in contrast, binding of other transcription factors (SP1,WT1, EGR1, and c-Myc) was generally increased in non- breast cells and normal breast tissues. Our findings suggest a novel mechanism for CTCF in the epigenetic regulation of Bax in breast cancer cells, whereby elevated levels of CTCF support preferential binding of CTCF to the Bax CTSs. In this context, CTCF functions as a transcriptional repressor counteracting influences of positive regulatory factors; depletion of breast cancer cells from CTCF therefore results in the activation of Bax and apoptosis. © 2013 Neoplasia Press, Inc

    The Structural Complexity of the Human BORIS Gene in Gametogenesis and Cancer

    Get PDF
    BORIS/CTCFL is a paralogue of CTCF, the major epigenetic regulator of vertebrate genomes. BORIS is normally expressed only in germ cells but is aberrantly activated in numerous cancers. While recent studies demonstrated that BORIS is a transcriptional activator of testis-specific genes, little is generally known about its biological and molecular functions.Here we show that BORIS is expressed as 23 isoforms in germline and cancer cells. The isoforms are comprised of alternative N- and C-termini combined with varying numbers of zinc fingers (ZF) in the DNA binding domain. The patterns of BORIS isoform expression are distinct in germ and cancer cells. Isoform expression is activated by downregulation of CTCF, upregulated by reduction in CpG methylation caused by inactivation of DNMT1 or DNMT3b, and repressed by activation of p53. Studies of ectopically expressed isoforms showed that all are translated and localized to the nucleus. Using the testis-specific cerebroside sulfotransferase (CST) promoter and the IGF2/H19 imprinting control region (ICR), it was shown that binding of BORIS isoforms to DNA targets in vitro is methylation-sensitive and depends on the number and specific composition of ZF. The ability to bind target DNA and the presence of a specific long amino terminus (N258) in different isoforms are necessary and sufficient to activate CST transcription. Comparative sequence analyses revealed an evolutionary burst in mammals with strong conservation of BORIS isoproteins among primates.The extensive repertoire of spliced BORIS variants in humans that confer distinct DNA binding and transcriptional activation properties, and their differential patterns of expression among germ cells and neoplastic cells suggest that the gene is involved in a range of functionally important aspects of both normal gametogenesis and cancer development. In addition, a burst in isoform diversification may be evolutionarily tied to unique aspects of primate speciation

    Coordinated Activation of Candidate Proto-Oncogenes and Cancer Testes Antigens via Promoter Demethylation in Head and Neck Cancer and Lung Cancer

    Get PDF
    Background: Epigenetic alterations have been implicated in the pathogenesis of solid tumors, however, proto-oncogenes activated by promoter demethylation have been sporadically reported. We used an integrative method to analyze expression in primary head and neck squamous cell carcinoma (HNSCC) and pharmacologically demethylated cell lines to identify aberrantly demethylated and expressed candidate proto-oncogenes and cancer testes antigens in HNSCC. Methodology/Principal Findings: We noted coordinated promoter demethylation and simultaneous transcriptional upregulation of proto-oncogene candidates with promoter homology, and phylogenetic footprinting of these promoters demonstrated potential recognition sites for the transcription factor BORIS. Aberrant BORIS expression correlated with upregulation of candidate proto-oncogenes in multiple human malignancies including primary non-small cell lung cancers and HNSCC, induced coordinated proto-oncogene specific promoter demethylation and expression in non-tumorigenic cells, and transformed NIH3T3 cells. Conclusions/Significance: Coordinated, epigenetic unmasking of multiple genes with growth promoting activity occurs i

    Determination of the required power for bus hybrid engine

    No full text
    This article presents a methodology for determining the required engine power of hybrid city buses. The vehicle’s driving cycle and its main technical characteristics were used as the initial data. The calculated change in power on the driving wheels is an intermediate result and is used to analyze the chains of energy transfer from gasoline engine to driving wheels. In this approach, a sequential type of circuit in a hybrid drive is used. A bus weighing 4 tons was considered as an example, and the calculations showed that the maximum power of the internal combustion engine should be 15.2 kW

    A nuclear factor-binding domain in the 5'-untranslated region of the <it>amyloid precursor protein </it>promoter: Implications for the regulation of gene expression

    No full text
    Abstract Background The extracellular deposition of aggregated amyloid β-protein is a neuropathological manifestation of Alzheimer disease and Down syndrome. The Amyloid β-protein is derived from a group of larger differentially spliced proteins, the amyloid protein precursors (APP). Data suggests that the level of APP gene expression could contribute to the pathological processes leading to amyloid depositions. Findings The 5' untranslated region (UTR) of the APP gene, encompassing 147 base pairs between the transcriptional (+1) and the translational start site, was examined for its role in APP expression. Deletions close to the transcriptional start site reduced expression from the APP promoter in part by transcriptional mechanisms. However, deletions between position +50 and +104 had no effect on transcriptional activity while significantly reducing overall expression from the promoter. A nuclear factor-binding domain designated as DAPB was identified between position +72 and +115 of the 5'-APP-UTR. The binding-recognition sequence was localized between position +96 and +105. The same mutations that eliminated factor-binding also reduced expression from the APP promoter while having no effect on in vitro transcription or the RNA levels transcribed from transfected constructs. Conclusions A nuclear factor-binding domain designated as DAPB was identified in the 5'-UTR of the APP gene. Elimination of factor-binding correlated with an overall decline in expression from the APP promoter while in vitro transcription and the total amount of in vivo transcribed RNA remained unaffected. This suggests that the binding-factor may have a function in post-transcriptional regulation, including nuclear export of mRNA.</p
    corecore