8,781 research outputs found

    Astrokit -- an Efficient Program for High-Precision Differential CCD Photometry and Search for Variable Stars

    Full text link
    Having a need to perform differential photometry for tens of thousands stars in a several square degrees field, we developed Astrokit program. The software corrects the star brightness variations caused by variations of atmospheric transparency: to this end, the program selects for each star an individual ensemble of reference stars having similar magnitudes and positions in the frame. With ten or more reference stars in the ensemble, the differences between their spectral types and the spectral type of the object studied become unimportant. Astrokit searches for variable stars using Robust Median Statistics criterion, which allows candidate variables to be selected more efficiently than by analyzing the standard deviation of star magnitudes. The software allows very precise automatic analysis of long inhomogeneous sets of photometric observations of a large number of objects to be performed, making it possible to find "hot Jupiter" type exoplanet transits and low-amplitude variables. We describe the algorithm of the program and the results of its application to reduce the data of the photometric sky survey in Cygnus as well as observations of the open cluster NGC188 and the transit of the exoplanet WASP-11 b / HAT-P-10 b, performed with the MASTER-II-URAL telescope of the Kourovka Astronomical Observatory of the Ural Federal University.Comment: to be published in Astrophysical Bulletin, Vol. 69, No.

    Dislocations in stacking and commensurate-incommensurate phase transition in bilayer graphene and hexagonal boron nitride

    Full text link
    Dislocations corresponding to a change of stacking in two-dimensional hexagonal bilayers, graphene and boron nitride, and associated with boundaries between commensurate domains are investigated using the two-chain Frenkel-Kontorova model on top of ab initio calculations. Structural transformations of bilayers in which the bottom layer is stretched and the upper one is left to relax freely are considered for gradually increased elongation of the bottom layer. Formation energies of dislocations, dislocation width and orientation of the boundary between commensurate domains are analyzed depending on the magnitude and direction of elongation. The second-order phase transition from the commensurate phase to the incommensurate one with multiple dislocations is predicted to take place at some critical elongation. The order parameter for this transition corresponds to the density of dislocations, which grows continuously upon increasing the elongation of the bottom layer above the critical value. In graphene and metastable boron nitride with the layers aligned in the same direction, where elementary dislocations are partial, this transition, however, is preceded by formation of the first dislocation at the elongation smaller than the critical one. The phase diagrams including this intermediate state are plotted in coordinates of the magnitude and direction of elongation of the bottom layer.Comment: 15 pages, 9 figure

    Comparison of performance of van der Waals-corrected exchange-correlation functionals for interlayer interaction in graphene and hexagonal boron nitride

    Full text link
    Exchange-correlation functionals with corrections for van der Waals interactions (PBE-D2, PBE-D3, PBE-D3(BJ), PBE-TS, optPBE-vdW and vdW-DF2) are tested for graphene and hexagonal boron nitride, both in the form of bulk and bilayer. The characteristics of the potential energy surface, such as the barrier to relative sliding of the layers and magnitude of corrugation, and physically measurable properties associated with relative in-plane and out-of-plane motion of the layers including the shear modulus and modulus for axial compression, shear mode frequency and frequency of out-of-plane vibrations are considered. The PBE-D3(BJ) functional gives the best results for the stackings of hexagonal boron nitride and graphite that are known to be ground-state from the experimental studies. However, it fails to describe the order of metastable states of boron nitride in energy. The PBE-D3 and vdW-DF2 functionals, which reproduce this order correctly, are identified as the optimal choice for general studies. The vdW-DF2 functional is preferred for evaluation of the modulus for axial compression and frequency of out-of-plane vibrations, while the PBE-D3 functional is somewhat more accurate in calculations of the shear modulus and shear mode frequency. The best description of the latter properties, however, is achieved also using the vdW-DF2 functional combined with consideration of the experimental interlayer distance. In the specific case of graphene, the PBE-D2 functional works very well and can be further improved by adjustment of the parameters.Comment: 22 pages, 4 figue

    Unidirectional Amplification and Shaping of Optical Pulses by Three-Wave Mixing with Negative Phonons

    Full text link
    A possibility to greatly enhance frequency-conversion efficiency of stimulated Raman scattering is shown by making use of extraordinary properties of three-wave mixing of ordinary and backward waves. Such processes are commonly attributed to negative-index plasmonic metamaterials. This work demonstrates the possibility to replace such metamaterials that are very challenging to engineer by readily available crystals which support elastic waves with contra-directed phase and group velocities. The main goal of this work is to investigate specific properties of indicated nonlinear optical process in short pulse regime and to show that it enables elimination of fundamental detrimental effect of fast damping of optical phonons on the process concerned. Among the applications is the possibility of creation of a family of unique photonic devices such as unidirectional Raman amplifiers and femtosecond pulse shapers with greatly improved operational properties.Comment: 6 pages, 4 figures. arXiv admin note: text overlap with arXiv:1304.681

    Transformation of amorphous carbon clusters to fullerenes

    Full text link
    Transformation of amorphous carbon clusters into fullerenes under high temperature is studied using molecular dynamics simulations at microsecond times. Based on the analysis of both structure and energy of the system, it is found that fullerene formation occurs in two stages. Firstly, fast transformation of the initial amorphous structure into a hollow sp2^2 shell with a few chains attached occurs with a considerable decrease of the potential energy and the number of atoms belonging to chains and to the amorphous domain. Then, insertion of remaining carbon chains into the sp2^2 network takes place at the same time with the fullerene shell formation. Two types of defects remaining after the formation of the fullerene shell are revealed: 7-membered rings and single one-coordinated atoms. One of the fullerene structures obtained contains no defects at all, which demonstrates that defect-free carbon cages can be occasionally formed from amorphous precursors directly without defect healing. No structural changes are observed after the fullerene formation, suggesting that defect healing is a slow process in comparison with the fullerene shell formation. The schemes of the revealed reactions of chain atoms insertion into the fullerene shell just before its completion are presented. The results of the performed simulations are summarized within the paradigm of fullerene formation due to selforganization of the carbon system.Comment: 35 pages, 9 figure
    corecore