12 research outputs found

    Π’ΠΏΠ»ΠΈΠ² ΠΏΡ€ΠΈΡ€ΠΎΠ΄ΠΈ N-алкоксигрупи Π½Π° Π±ΡƒΠ΄ΠΎΠ²Ρƒ Ρ– Ρ€Π΅Π°ΠΊΡ†Ρ–ΠΉΠ½Ρƒ Π·Π΄Π°Ρ‚Π½Ρ–ΡΡ‚ΡŒ N-ацилокси-N-алкоксисСчовин Ρ– N-Ρ…Π»ΠΎΡ€-N-алкоксисСчовин

    No full text
    Π’ N-ацилокси-N-алкоксимочСвинах строСниС N-алкоксизамСститСля влияСт Π½Π° ΠΎΠ±Ρ‰ΡƒΡŽ ΠΊΠΎΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΡŽ ΠΌΠΎΠ»Π΅ΠΊΡƒΠ»Ρ‹, ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ Π°Ρ‚ΠΎΠΌΠ° Π°Π·ΠΎΡ‚Π° ΠΈ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ Π½ΡƒΠΊΠ»Π΅ΠΎΡ„ΠΈΠ»ΡŒΠ½ΠΎΠ³ΠΎ замСщСния ацилоксигрупы Π½Π° алкоксигруппу Π² случаС Π°Π»ΠΊΠΎΠ³ΠΎΠ»ΠΈΠ·ΠΌΠ°. Π’ ΠΎΡ‚Π»ΠΈΡ‡ΠΈΠ΅ ΠΎΡ‚ тСчСния Π°Π»ΠΊΠΎΠ³ΠΎΠ»ΠΈΠ·Π° ΠΏΠ΅Ρ€Π²ΠΈΡ‡Π½Ρ‹ΠΌΠΈ спиртами, Ρ…ΠΎΠ΄ ΠΈΠ·ΠΎΠΏΡ€ΠΎΠΏΠ°Π½ΠΎΠ»ΠΈΠ·Π° N-Ρ…Π»ΠΎΡ€-N-алкоксимочСвин Π² присутствии Π°Ρ†Π΅Ρ‚Π°Ρ‚Π° натрия зависит ΠΎΡ‚ ΠΏΡ€ΠΈΡ€ΠΎΠ΄Ρ‹ N-алкоксигруппыУ N-ацилокси-N-алкоксисСчовинах  Π±ΡƒΠ΄ΠΎΠ²Π° N-алкоксизамісника  Π²ΠΏΠ»ΠΈΠ²Π°Ρ”Β  Π½Π°Β  Π·Π°Π³Π°Π»ΡŒΠ½Ρƒ ΠΊΠΎΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†Ρ–ΡŽΒ  ΠΌΠΎΠ»Π΅ΠΊΡƒΠ»ΠΈ,Β  ΡΡ‚ΡƒΠΏΡ–Π½ΡŒΒ  ΠΏΡ–Ρ€Π°ΠΌΡ–Π΄Π°Π»ΡŒΠ½ΠΎΡΡ‚Ρ–Β  Π°Ρ‚ΠΎΠΌΠ°Β  Π½Ρ–Ρ‚Ρ€ΠΎΠ³Π΅Π½ΡƒΒ  Ρ‚Π°Β  ΠΌΠΎΠΆΠ»ΠΈΠ²Ρ–ΡΡ‚ΡŒ Π½ΡƒΠΊΠ»Π΅ΠΎΡ„Ρ–Π»ΡŒΠ½ΠΎΠ³ΠΎ заміщСння ацилоксигрупи Π½Π° алкоксигруппу Ρƒ Π²ΠΈΠΏΠ°Π΄ΠΊΡƒ Π°Π»ΠΊΠΎΠ³ΠΎΠ»Ρ–Π·Ρƒ.Β  На Π²Ρ–Π΄ΠΌΡ–Π½Ρƒ Π²Ρ–Π΄ ΠΏΠ΅Ρ€Π΅Π±Ρ–Π³Ρƒ Π°Π»ΠΊΠΎΠ³ΠΎΠ»Ρ–Π·Ρƒ ΠΏΠ΅Ρ€Π²ΠΈΠ½Π½ΠΈΠΌΠΈ спиртами, ΠΏΠ΅Ρ€Π΅Π±Ρ–Π³ Ρ–Π·ΠΎΠΏΡ€ΠΎΠΏΠ°Π½ΠΎΠ»Ρ–Π·Ρƒ N-Ρ…Π»ΠΎΡ€-N-алкоксисСчовин Ρƒ присутності Π°Ρ†Π΅Ρ‚Π°Ρ‚Ρƒ Π½Π°Ρ‚Ρ€Ρ–ΡŽ Π·Π°Π»Π΅ΠΆΠΈΡ‚ΡŒ Π²Ρ–Π΄ ΠΏΡ€ΠΈΡ€ΠΎΠ΄ΠΈ N-алкоксигруп

    ВлияниС ΠΏΡ€ΠΈΡ€ΠΎΠ΄Ρ‹ N-алкоксигруппы Π½Π° строСниС ΠΈ Ρ€Π΅Π°ΠΊΡ†ΠΈΠΎΠ½Π½ΡƒΡŽ ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡ‚ΡŒ N-ацилокси-N-алкоксимочСвин ΠΈ N-Ρ…Π»ΠΎΡ€-N-алкоксимочСвин

    No full text
    Π’ N-ацилокси-N-алкоксимочСвинах строСниС N-алкоксизамСститСля влияСт Π½Π° ΠΎΠ±Ρ‰ΡƒΡŽ ΠΊΠΎΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΡŽ ΠΌΠΎΠ»Π΅ΠΊΡƒΠ»Ρ‹, ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ Π°Ρ‚ΠΎΠΌΠ° Π°Π·ΠΎΡ‚Π° ΠΈ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ Π½ΡƒΠΊΠ»Π΅ΠΎΡ„ΠΈΠ»ΡŒΠ½ΠΎΠ³ΠΎ замСщСния ацилоксигрупы Π½Π° алкоксигруппу Π² случаС Π°Π»ΠΊΠΎΠ³ΠΎΠ»ΠΈΠ·ΠΌΠ°. Π’ ΠΎΡ‚Π»ΠΈΡ‡ΠΈΠ΅ ΠΎΡ‚ тСчСния Π°Π»ΠΊΠΎΠ³ΠΎΠ»ΠΈΠ·Π° ΠΏΠ΅Ρ€Π²ΠΈΡ‡Π½Ρ‹ΠΌΠΈ спиртами, Ρ…ΠΎΠ΄ ΠΈΠ·ΠΎΠΏΡ€ΠΎΠΏΠ°Π½ΠΎΠ»ΠΈΠ·Π° N-Ρ…Π»ΠΎΡ€-N-алкоксимочСвин Π² присутствии Π°Ρ†Π΅Ρ‚Π°Ρ‚Π° натрия зависит ΠΎΡ‚ ΠΏΡ€ΠΈΡ€ΠΎΠ΄Ρ‹ N-алкоксигрупп

    ВзаимодСйствиС N-Ρ…Π»ΠΎΡ€-N-алкоксикарбаматов с Ρ‚Ρ€ΠΈΡ„Ρ‚ΠΎΡ€Π°Ρ†Π΅Ρ‚Π°Ρ‚ΠΎΠΌ сСрСбра

    No full text
    Π’ случаС взаимодСйствия ΠΌΠ΅Ρ‚ΠΈΠ»-N-Ρ…Π»ΠΎΡ€-N-алкоксикарбаматов с Ρ‚Ρ€ΠΈΡ„Ρ‚ΠΎΡ€Π°Ρ†Π΅Ρ‚Π°Ρ‚ΠΎΠΌ сСрСбра ΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‚ΡΡ N,N-бис(мСтоксикарбонил)-N-алкоксиимиды. ИсслСдованиС строСния N,N-бис(мСтоксикарбонил)-N-мСтоксиимида с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ РБА позволяСт Π΄ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ Π°Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ эффСкта nO(Me)β†’Οƒ*NX Π² NXN-мСтоксисСчовинах (X = OAc, Cl, OMe, N+C5H5).</p

    Novel (2-amino-4-arylimidazolyl)propanoic acids and pyrrolo[1,2-c]imidazoles via the domino reactions of 2-amino-4-arylimidazoles with carbonyl and methylene active compounds

    No full text
    The unexpectedly uncatalyzed reaction between 2-amino-4-arylimidazoles, aromatic aldehydes and Meldrum’s acid has selectively led to the corresponding Knoevenagel–Michael adducts containing a free amino group in the imidazole fragment. The adducts derived from Meldrum’s acid have been smoothly converted into 1,7-diaryl-3-amino-6,7-dihydro-5H-pyrrolo[1,2-c]imidazol-5-ones and 3-(2-amino-4-aryl-1H-imidazol-5-yl)-3-arylpropanoic acids. The interaction of 2-amino-4-arylimidazoles with aromatic aldehydes or isatins and acyclic methylene active compounds has led to the formation of pyrrolo[1,2-c]imidazole-6-carbonitriles, pyrrolo[1,2-с]imidazole-6-carboxylates and spiro[indoline-3,7'-pyrrolo[1,2-c]imidazoles], which can be considered as the analogues of both 3,3’-spirooxindole and 2-aminoimidazole marine sponge alkaloids

    Взаємодія N-Ρ…Π»ΠΎΡ€-N-алкоксікарбаматів Π· Ρ‚Ρ€ΠΈΡ„Ρ‚ΠΎΡ€Π°Ρ†Π΅Ρ‚Π°Ρ‚ΠΎΠΌ срібла

    No full text
    Π’ случаС взаимодСйствия ΠΌΠ΅Ρ‚ΠΈΠ»-N-Ρ…Π»ΠΎΡ€-N-алкоксикарбаматов с Ρ‚Ρ€ΠΈΡ„Ρ‚ΠΎΡ€Π°Ρ†Π΅Ρ‚Π°Ρ‚ΠΎΠΌ сСрСбра ΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‚ΡΡ N,N-бис(мСтоксикарбонил)-N-алкоксиимиды. ИсслСдованиС строСния N,N-бис(мСтоксикарбонил)-N-мСтоксиимида с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ РБА позволяСт Π΄ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ Π°Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ эффСкта nO(Me)β†’Οƒ*NX Π² NXN-мСтоксисСчовинах (X = OAc, Cl, OMe, N+C5H5).Π£ Ρ€Π°Π·Ρ– Π²Π·Π°Ρ”ΠΌΠΎΠ΄Ρ–Ρ— ΠΌΠ΅Ρ‚ΠΈΠ»-N-Ρ…Π»ΠΎΡ€-N-алкоксикарбаматів Π· Ρ‚Ρ€ΠΈΡ„Ρ‚ΠΎΡ€Π°Ρ†Π΅Ρ‚Π°Ρ‚ΠΎΠΌ срібла ΡƒΡ‚Π²ΠΎΡ€ΡŽΡŽΡ‚ΡŒΡΡ N,N-біс(мСтоксикарбоніл)-N-алкоксиіміди. ДослідТСння Π±ΡƒΠ΄ΠΎΠ²ΠΈ N,N-біс(мСтоксикарбоніл)-N-мСтоксиіміду Π·Π° допомогою РБА дозволяє довСсти Π½Π°ΡΠ²Π½Ρ–ΡΡ‚ΡŒ Π°Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ Π΅Ρ„Π΅ΠΊΡ‚ΡƒΒ nO(Me)β†’Οƒ*N-XΒ Ρƒ N-X-N-мСтоксисСчовинах (X = OAc, Cl, OMe, N+C5H5)

    Novel (2-amino-4-arylimidazolyl)propanoic acids and pyrrolo[1,2-c]imidazoles via the domino reactions of 2-amino-4-arylimidazoles with carbonyl and methylene active compounds

    No full text
    The unexpectedly uncatalyzed reaction between 2-amino-4-arylimidazoles, aromatic aldehydes and Meldrum's acid has selectively led to the corresponding Knoevenagel-Michael adducts containing a free amino group in the imidazole fragment. The adducts derived from Meldrum's acid have been smoothly converted into 1,7-diaryl-3-amino-6,7-dihydro-5H-pyrrolo[1,2-c]imidazol-5-ones and 3-(2-amino-4-aryl-1H-imidazol-5-yl)-3-arylpropanoic acids. The interaction of 2-amino-4-arylimidazoles with aromatic aldehydes or isatins and acyclic methylene active compounds has led to the formation of pyrrolo[1,2-c]imidazole-6-carbonitriles, pyrrolo[1,2-с]imidazole-6-carboxylates and spiro[indoline-3,7'-pyrrolo[1,2-c]imidazoles], which can be considered as the analogues of both 3,3'-spirooxindole and 2-aminoimidazole marine sponge alkaloids.status: publishe

    Reassessing the evidence for tree-growth and inferred temperature change during the Common Era in Yamalia, northwest Siberia

    Get PDF
    The development of research into the history of tree growth and inferred summer temperature changes in Yamalia spanning the last 2000 years is reviewed. One focus is the evolving production of tree-ring width (TRW) and tree-ring maximum-latewood density (MXD) larch (Larix sibirica) chronologies, incorporating different applications of Regional Curve Standardisation (RCS). Another focus is the comparison of independent data representing past tree growth in adjacent Yamalia areas: Yamal and Polar Urals, and the examination of the evidence for common growth behaviour at different timescales. The sample data we use are far more numerous and cover a longer time-span at Yamal compared to the Polar Urals, but Yamal has only TRW, while there are both TRW and MXD for the Polar Urals. We use more data (sub-fossil and from living trees) than in previous dendroclimatic studies in this region. We develop a new TRW chronology for Yamal, more than 2000 years long and running up to 2005. For the Polar Urals we develop new TRW and MXD chronologies that show good agreement at short (<15 years) and medium (15–100 years) timescales demonstrating the validity of attempts to reconcile the evidence of longer-timescale information that they provide. We use a β€œconservative” application of the RCS approach (two-curve signal-free RCS), guarding against the possibility of β€œmodern sample bias”: a possible inflation of recent chronology values arising out of inadvertent selection of mostly relatively fast-growing trees in recent centuries. We also transform tree indices to have a normal distribution to remove the positive chronology skew often apparent in RCS TRW chronologies. This also reduces the apparent magnitude of 20th century tree-growth levels
    corecore