63 research outputs found

    Insights into Arbovirus Evolution and Adaptation from Experimental Studies

    Get PDF
    Arthropod-borne viruses (arboviruses) are maintained in nature by cycling between vertebrate hosts and haematophagous invertebrate vectors. These viruses are responsible for causing a significant public health burden throughout the world, with over 100 species having the capacity to cause human disease. Arbovirus outbreaks in previously naïve environments demonstrate the potential of these pathogens for expansion and emergence, possibly exacerbated more recently by changing climates. These recent outbreaks, together with the continued devastation caused by endemic viruses, such as Dengue virus which persists in many areas, demonstrate the need to better understand the selective pressures that shape arbovirus evolution. Specifically, a comprehensive understanding of host-virus interactions and how they shape both host-specific and virus-specific evolutionary pressures is needed to fully evaluate the factors that govern the potential for host shifts and geographic expansions. One approach to advance our understanding of the factors influencing arbovirus evolution in nature is the use of experimental studies in the laboratory. Here, we review the contributions that laboratory passage and experimental infection studies have made to the field of arbovirus adaptation and evolution, and how these studies contribute to the overall field of arbovirus evolution. In particular, this review focuses on the areas of evolutionary constraints and mutant swarm dynamics; how experimental results compare to theoretical predictions; the importance of arbovirus ecology in shaping viral swarms; and how current knowledge should guide future questions relevant to understanding arbovirus evolution

    The costs of infection and resistance as determinants of West Nile virus susceptibility in Culex mosquitoes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Understanding the phenotypic consequences of interactions between arthropod-borne viruses (arboviruses) and their mosquito hosts has direct implications for predicting the evolution of these relationships and the potential for changes in epidemiological patterns. Although arboviruses are generally not highly pathogenic to mosquitoes, pathology has at times been noted. Here, in order to evaluate the potential costs of <it>West Nile virus </it>(WNV) infection and resistance in a primary WNV vector, and to assess the extent to which virus-vector relationships are species-specific, we performed fitness studies with and without WNV exposure using a highly susceptible <it>Culex pipiens </it>mosquito colony. Specifically, we measured and compared survival, fecundity, and feeding rates in bloodfed mosquitoes that were (i) infected following WNV exposure (susceptible), (ii) uninfected following WNV exposure (resistant), or (iii) unexposed.</p> <p>Results</p> <p>In contrast to our previous findings with a relatively resistant <it>Cx. tarsalis </it>colony, WNV infection did not alter fecundity or blood-feeding behaviour of <it>Cx. pipiens</it>, yet results do indicate that resistance to infection is associated with a fitness cost in terms of mosquito survival.</p> <p>Conclusions</p> <p>The identification of species-specific differences provides an evolutionary explanation for variability in vector susceptibility to arboviruses and suggests that understanding the costs of infection and resistance are important factors in determining the potential competence of vector populations for arboviruses.</p

    Characterization of Rabensburg Virus, a Flavivirus Closely Related to West Nile Virus of the Japanese Encephalitis Antigenic Group

    Get PDF
    Rabensburg virus (RABV), a Flavivirus with ∼76% nucleotide and 90% amino acid identity with representative members of lineage one and two West Nile virus (WNV), previously was isolated from Culex pipiens and Aedes rossicus mosquitoes in the Czech Republic, and phylogenetic and serologic analyses demonstrated that it was likely a new lineage of WNV. However, no direct link between RABV and human disease has been definitively established and the extent to which RABV utilizes the typical WNV transmission cycle is unknown. Herein, we evaluated vector competence and capacity for vertical transmission (VT) in Cx. pipiens; in vitro growth on avian, mammalian, and mosquito cells; and infectivity and viremia production in birds. RABV infection and replication only were detected on mosquito cells. Experimentally inoculated birds did not become infected. Cx. pipiens had poor peroral vector competence and a higher VT rate as compared to US-WNV in Cx. pipiens. As a result, we postulate that RABV is an intermediate between the mosquito-specific and horizontally transmitted flaviviruses

    Cooperative interactions in the West Nile virus mutant swarm

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>RNA viruses including arthropod-borne viruses (arboviruses) exist as highly genetically diverse mutant swarms within individual hosts. A more complete understanding of the phenotypic correlates of these diverse swarms is needed in order to equate RNA swarm breadth and composition to specific adaptive and evolutionary outcomes.</p> <p>Results</p> <p>Here, we determined clonal fitness landscapes of mosquito cell-adapted <it>West Nile virus</it> (WNV) and assessed how altering the capacity for interactions among variants affects mutant swarm dynamics and swarm fitness. Our results demonstrate that although there is significant mutational robustness in the WNV swarm, genetic diversity also corresponds to substantial phenotypic diversity in terms of relative fitness <it>in vitro</it>. In addition, our data demonstrate that increasing levels of co-infection can lead to widespread strain complementation, which acts to maintain high levels of phenotypic and genetic diversity and potentially slow selection for individual variants. Lastly, we show that cooperative interactions may lead to swarm fitness levels which exceed the relative fitness levels of any individual genotype.</p> <p>Conclusions</p> <p>These studies demonstrate the profound effects variant interactions can have on arbovirus evolution and adaptation, and provide a baseline by which to study the impact of this phenomenon in natural systems.</p

    Differential Effects of Temperature and Mosquito Genetics Determine Transmissibility of Arboviruses by <i>Aedes aegypti</i> in Argentina

    Get PDF
    Aedes aegypti (L.) (Diptera: Culicidae) have a global distribution and are the primary vector of a number of mosquito-borne viruses responsible for epidemics throughout the Americas. As in much of South America, the threat from pathogens including dengue virus (DENV; Flaviviridae, Flavivirus) and chikungunya virus (CHIKV; Togaviridae, Alphavirus) has increased in Argentina in recent years. The complexity of transmission cycles makes predicting the occurrence and intensity of arbovirus outbreaks difficult. To gain a better understanding of the risk of DENV and CHIKV in Argentina and the factors influencing this risk, we evaluated the role of population and temperature in the vector competence and vectorial capacity (VC) of Ae. aegypti from geographically and ecologically distinct locations. Our results demonstrate that intrinsic and extrinsic factors including mosquito population, viral species, and temperature significantly influence both vector competence and overall VC of Ae. aegypti in Argentina, yet also that the magnitude of these influences is highly variable. Specifically, results suggest that CHIKV competence is more dependent on mosquito genetics than is DENV competence, whereas temperature has a greater effect on DENV transmission. In addition, although there is an overall positive correlation between temperature and competence for both viruses, there are exceptions to this for individual virus?population combinations. Together, these data establish large variability in VC for these pathogens among distinct Ae. aegypti populations in Argentina and demonstrate that accurate assessment of arbovirus risk will require nuanced models that fully consider the complexity of interactions between virus, temperature, mosquito genetics, and hosts.Centro de Estudios Parasitológicos y de Vectore

    Factors Related to Aedes aegypti (Diptera: Culicidae) Populations and Temperature Determine Differences on Life-History Traits With Regional Implications in Disease Transmission

    Get PDF
    Aedes aegypti (L.) (Diptera: Culicidae) is a vector of many medically significant viruses in the Americas, including dengue virus, chikungunya virus, and Zika virus. Traits such as longevity, fecundity, and feeding behavior contribute to the ability of Ae. aegypti to serve as a vector of these pathogens. Both local environmental factors and population genetics could contribute to variability in these traits. We performed a comparative study of Ae. aegypti populations from four geographically and environmentally distinct collection sites in Argentina in which the cohorts from each population were held at temperature values simulating a daily cycle, with an average of 25°C in order to identify the influence of population on life-history traits. In addition, we performed the study of the same populations held at a daily temperature cycle similar to that of the surveyed areas. According to the results, Aguaray is the most outstanding population, showing features that are important to achieve high fitness. Whereas La Plata gathers features consistent with low fitness. Iguazu was outstanding in blood-feeding rate while Posadas's population showed intermediate values. Our results also demonstrate that climate change could differentially affect unique populations, and that these differences have implications for the capacity for Ae. aegypti to act as vectors for medically important arboviruses.Fil: Muttis, Evangelina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Estudios Parasitológicos y de Vectores. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Centro de Estudios Parasitológicos y de Vectores; ArgentinaFil: Balsalobre, Agustin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Estudios Parasitológicos y de Vectores. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Centro de Estudios Parasitológicos y de Vectores; ArgentinaFil: Chuchuy, Ailen. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Estudios Parasitológicos y de Vectores. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Centro de Estudios Parasitológicos y de Vectores; ArgentinaFil: Mangudo, Carolina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones en Energía no Convencional. Universidad Nacional de Salta. Facultad de Ciencias Exactas. Departamento de Física. Instituto de Investigaciones en Energía no Convencional; ArgentinaFil: Ciota, Alexander. Wadsworth Center, New York State Department Of Health; Estados UnidosFil: Micieli, Maria Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Estudios Parasitológicos y de Vectores. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Centro de Estudios Parasitológicos y de Vectores; Argentin

    Biological characterization of Aedes albopictus (Diptera: Culicidae) in Argentina: Implications for arbovirus transmission

    Get PDF
    Aedes albopictus (Diptera: Culicidae) is an invasive mosquito, native to Asia, that has expanded its range worldwide. It is considered to be a public health threat as it is a competent vector of viruses of medical importance, including dengue, chikungunya, and Zika. Despite its medical importance there is almost no information on biologically important traits of Ae. albopictus in Argentina. We studied life cycle traits, demographic parameters and analyzed the competence of this mosquito as a virus vector. In addition, we determined the prevalence of Wolbachia strains in Ae. albopictus as a first approach to investigate the potential role of this bacteria in modulating vector competence for arboviruses. We observed low hatch rates of eggs, which led to a negative growth rate. We found that Ae. albopictus individuals were infected with Wolbachia in the F1 but while standard superinfection with wAlbA and wAlbB types was found in 66.7% of the females, 16.7% of the females and 62.5% of the males were single-infected with the wAlbB strain. Finally, despite high levels of infection and dissemination, particularly for chikungunya virus, Ae. albopictus from subtropical Argentina were found to be relatively inefficient vectors for transmission of both chikungunya and dengue viruses.Centro de Estudios Parasitológicos y de Vectore

    Differential Effects of Temperature and Mosquito Genetics Determine Transmissibility of Arboviruses by <i>Aedes aegypti</i> in Argentina

    Get PDF
    Aedes aegypti (L.) (Diptera: Culicidae) have a global distribution and are the primary vector of a number of mosquito-borne viruses responsible for epidemics throughout the Americas. As in much of South America, the threat from pathogens including dengue virus (DENV; Flaviviridae, Flavivirus) and chikungunya virus (CHIKV; Togaviridae, Alphavirus) has increased in Argentina in recent years. The complexity of transmission cycles makes predicting the occurrence and intensity of arbovirus outbreaks difficult. To gain a better understanding of the risk of DENV and CHIKV in Argentina and the factors influencing this risk, we evaluated the role of population and temperature in the vector competence and vectorial capacity (VC) of Ae. aegypti from geographically and ecologically distinct locations. Our results demonstrate that intrinsic and extrinsic factors including mosquito population, viral species, and temperature significantly influence both vector competence and overall VC of Ae. aegypti in Argentina, yet also that the magnitude of these influences is highly variable. Specifically, results suggest that CHIKV competence is more dependent on mosquito genetics than is DENV competence, whereas temperature has a greater effect on DENV transmission. In addition, although there is an overall positive correlation between temperature and competence for both viruses, there are exceptions to this for individual virus?population combinations. Together, these data establish large variability in VC for these pathogens among distinct Ae. aegypti populations in Argentina and demonstrate that accurate assessment of arbovirus risk will require nuanced models that fully consider the complexity of interactions between virus, temperature, mosquito genetics, and hosts.Centro de Estudios Parasitológicos y de Vectore

    Differential Effects of Temperature and Mosquito Genetics Determine Transmissibility of Arboviruses by Aedes aegypti in Argentina

    Get PDF
    Aedes aegypti (L.) (Diptera: Culicidae) have a global distribution and are the primary vector of a number of mosquito-borne viruses responsible for epidemics throughout the Americas. As in much of South America, the threat from pathogens including dengue virus (DENV; Flaviviridae, Flavivirus) and chikungunya virus (CHIKV; Togaviridae, Alphavirus) has increased in Argentina in recent years. The complexity of transmission cycles makes predicting the occurrence and intensity of arbovirus outbreaks difficult. To gain a better understanding of the risk of DENV and CHIKV in Argentina and the factors influencing this risk, we evaluated the role of population and temperature in the vector competence and vectorial capacity (VC) of Ae. aegypti from geographically and ecologically distinct locations. Our results demonstrate that intrinsic and extrinsic factors including mosquito population, viral species, and temperature significantly influence both vector competence and overall VC of Ae. aegypti in Argentina, yet also that the magnitude of these influences is highly variable. Specifically, results suggest that CHIKV competence is more dependent on mosquito genetics than is DENV competence, whereas temperature has a greater effect on DENV transmission. In addition, although there is an overall positive correlation between temperature and competence for both viruses, there are exceptions to this for individual virus?population combinations. Together, these data establish large variability in VC for these pathogens among distinct Ae. aegypti populations in Argentina and demonstrate that accurate assessment of arbovirus risk will require nuanced models that fully consider the complexity of interactions between virus, temperature, mosquito genetics, and hosts.Fil: Ciota, Alexander T.. Wadsworth Center. State of New York Department of Health; Estados UnidosFil: Chin, Pamela A.. Wadsworth Center. State of New York Department of Health; Estados UnidosFil: Ehrbar, Dylan J.. Wadsworth Center. State of New York Department of Health; Estados UnidosFil: Micieli, Maria Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Estudios Parasitológicos y de Vectores. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Centro de Estudios Parasitológicos y de Vectores; ArgentinaFil: Fonseca, Dina M.. Center For Vector Biology, Rutgers University; Estados UnidosFil: Kramer, Laura D.. Wadsworth Center. State of New York Department of Health; Estados Unido

    Biological characterization of Aedes albopictus (Diptera: Culicidae) in Argentina: Implications for arbovirus transmission

    Get PDF
    Aedes albopictus (Diptera: Culicidae) is an invasive mosquito, native to Asia, that has expanded its range worldwide. It is considered to be a public health threat as it is a competent vector of viruses of medical importance, including dengue, chikungunya, and Zika. Despite its medical importance there is almost no information on biologically important traits of Ae. albopictus in Argentina. We studied life cycle traits, demographic parameters and analyzed the competence of this mosquito as a virus vector. In addition, we determined the prevalence of Wolbachia strains in Ae. albopictus as a first approach to investigate the potential role of this bacteria in modulating vector competence for arboviruses. We observed low hatch rates of eggs, which led to a negative growth rate. We found that Ae. albopictus individuals were infected with Wolbachia in the F1 but while standard superinfection with wAlbA and wAlbB types was found in 66.7% of the females, 16.7% of the females and 62.5% of the males were single-infected with the wAlbB strain. Finally, despite high levels of infection and dissemination, particularly for chikungunya virus, Ae. albopictus from subtropical Argentina were found to be relatively inefficient vectors for transmission of both chikungunya and dengue viruses.Centro de Estudios Parasitológicos y de Vectore
    corecore