26 research outputs found
Pulmonary Nodule Classification in Lung Cancer from 3D Thoracic CT Scans Using fastai and MONAI
We construct a convolutional neural network to classify pulmonary nodules as malignant or benign in the context of lung cancer. To construct and train our model, we use our novel extension of the fastai deep learning framework to 3D medical imaging tasks, combined with the MONAI deep learning library. We train and evaluate the model using a large, openly available data set of annotated thoracic CT scans. Our model achieves a nodule classification accuracy of 92.4% and a ROC AUC of 97% when compared to a “ground truth” based on multiple human raters subjective assessment of malignancy. We further evaluate our approach by predicting patient-level diagnoses of cancer, achieving a test set accuracy of 75%. This is higher than the 70% obtained by aggregating the human raters assessments. Class activation maps are applied to investigate the features used by our classifier, enabling a rudimentary level of explainability for what is otherwise close to “black box” predictions. As the classification of structures in chest CT scans is useful across a variety of diagnostic and prognostic tasks in radiology, our approach has broad applicability. As we aimed to construct a fully reproducible system that can be compared to new proposed methods and easily be adapted and extended, the full source code of our work is available at https://github.com/MMIV-ML/Lung-CT-fastai-2020
2D and 3D U-Nets for skull stripping in a large and heterogeneous set of head MRI using fastai
Skull stripping in brain imaging is the removal of the parts of images corresponding to non-brain tissue. Fast and accurate skull stripping is a crucial step for numerous medical brain imaging applications, e.g. registration, segmentation and feature extraction, as it eases subsequent image processing steps. In this work, we propose and compare two novel skull stripping methods based on 2D and 3D convolutional neural networks trained on a large, heterogeneous collection of 2777 clinical 3D T1-weighted MRI images from 1681 healthy subjects. We investigated the performance of the models by testing them on 927 images from 324 subjects set aside from our collection of data, in addition to images from an independent, large brain imaging study: the IXI dataset (n = 556). Our models achieved mean Dice scores higher than 0:978 and Jaccard indices higher than 0:957 on all tests sets, making predictions on new unseen brain MR images in approximately 1.4s for the 3D model and 12.4s for the 2D model. A preliminary exploration of the models’ robustness to variation in the input data showed favourable results when compared to a traditional, well-established skull stripping method. With further research aimed at increasing the models’ robustness, such accurate and fast skull stripping methods can potentially form a useful component of brain MRI analysis pipelines.publishedVersio
Functional activity level reported by an informant is an early predictor of Alzheimer’s disease
Background Loss of autonomy in day-to-day functioning is one of the feared outcomes of Alzheimer’s disease (AD), and relatives may have been worried by subtle behavioral changes in ordinary life situations long before these changes are given medical attention. In the present study, we ask if such subtle changes should be given weight as an early predictor of a future AD diagnosis. Methods Longitudinal data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) were used to define a group of adults with a mild cognitive impairment (MCI) diagnosis remaining stable across several visits (sMCI, n=360; 55-91 years at baseline), and a group of adults who over time converted from having an MCI diagnosis to an AD diagnosis (cAD, n=320; 55-88 years at baseline). Eleven features were used as input in a Random Forest (RF) binary classifier (sMCI vs. cAD) model. This model was tested on an unseen holdout part of the dataset, and further explored by three different permutation-driven importance estimates and a comprehensive post hoc machine learning exploration. Results The results consistently showed that measures of daily life functioning, verbal memory function, and a volume measure of hippocampus were the most important predictors of conversion from an MCI to an AD diagnosis. Results from the RF classification model showed a prediction accuracy of around 70% in the test set. Importantly, the post hoc analyses showed that even subtle changes in everyday functioning noticed by a close informant put MCI patients at increased risk for being on a path toward the major cognitive impairment of an AD diagnosis. Conclusion The results showed that even subtle changes in everyday functioning should be noticed when reported by relatives in a clinical evaluation of patients with MCI. Information of these changes should also be included in future longitudinal studies to investigate different pathways from normal cognitive aging to the cognitive decline characterizing different stages of AD and other neurodegenerative disorders.publishedVersio
Predicting conversion to Alzheimer’s disease in individuals with Mild Cognitive Impairment using clinically transferable features
Patients with Mild Cognitive Impairment (MCI) have an increased risk of Alzheimer’s disease (AD). Early identification of underlying neurodegenerative processes is essential to provide treatment before the disease is well established in the brain. Here we used longitudinal data from the ADNI database to investigate prediction of a trajectory towards AD in a group of patients defined as MCI at a baseline examination. One group remained stable over time (sMCI, n = 357) and one converted to AD (cAD, n = 321). By running two independent classification methods within a machine learning framework, with cognitive function, hippocampal volume and genetic APOE status as features, we obtained a cross-validation classification accuracy of about 70%. This level of accuracy was confirmed across different classification methods and validation procedures. Moreover, the sets of misclassified subjects had a large overlap between the two models. Impaired memory function was consistently found to be one of the core symptoms of MCI patients on a trajectory towards AD. The prediction above chance level shown in the present study should inspire further work to develop tools that can aid clinicians in making prognostic decisions.publishedVersio
Fully Automatic Whole-Volume Tumor Segmentation in Cervical Cancer
Uterine cervical cancer (CC) is the most common gynecologic malignancy worldwide. Whole-volume radiomic profiling from pelvic MRI may yield prognostic markers for tailoring treatment in CC. However, radiomic profiling relies on manual tumor segmentation which is unfeasible in the clinic. We present a fully automatic method for the 3D segmentation of primary CC lesions using state-of-the-art deep learning (DL) techniques. In 131 CC patients, the primary tumor was manually segmented on T2-weighted MRI by two radiologists (R1, R2). Patients were separated into a train/validation (n = 105) and a test- (n = 26) cohort. The segmentation performance of the DL algorithm compared with R1/R2 was assessed with Dice coefficients (DSCs) and Hausdorff distances (HDs) in the test cohort. The trained DL network retrieved whole-volume tumor segmentations yielding median DSCs of 0.60 and 0.58 for DL compared with R1 (DL-R1) and R2 (DL-R2), respectively, whereas DSC for R1-R2 was 0.78. Agreement for primary tumor volumes was excellent between raters (R1-R2: intraclass correlation coefficient (ICC) = 0.93), but lower for the DL algorithm and the raters (DL-R1: ICC = 0.43; DL-R2: ICC = 0.44). The developed DL algorithm enables the automated estimation of tumor size and primary CC tumor segmentation. However, segmentation agreement between raters is better than that between DL algorithm and raters.publishedVersio
An overview of deep learning in medical imaging focusing on MRI
What has happened in machine learning lately, and what does it mean for the future of medical image analysis? Machine learning has witnessed a tremendous amount of attention over the last few years. The current boom started around 2009 when so-called deep artificial neural networks began outperforming other established models on a number of important benchmarks. Deep neural networks are now the state-of-the-art machine learning models across a variety of areas, from image analysis to natural language processing, and widely deployed in academia and industry. These developments have a huge potential for medical imaging technology, medical data analysis, medical diagnostics and healthcare in general, slowly being realized. We provide a short overview of recent advances and some associated challenges in machine learning applied to medical image processing and image analysis. As this has become a very broad and fast expanding field we will not survey the entire landscape of applications, but put particular focus on deep learning in MRI.
Our aim is threefold: (i) give a brief introduction to deep learning with pointers to core references; (ii) indicate how deep learning has been applied to the entire MRI processing chain, from acquisition to image retrieval, from segmentation to disease prediction; (iii) provide a starting point for people interested in experimenting and perhaps contributing to the field of deep learning for medical imaging by pointing out good educational resources, state-of-the-art open-source code, and interesting sources of data and problems related medical imaging.publishedVersio
Pulmonary Nodule Classification in Lung Cancer from 3D Thoracic CT Scans Using fastai and MONAI
We construct a convolutional neural network to classify pulmonary nodules as malignant or benign in the context of lung cancer. To construct and train our model, we use our novel extension of the fastai deep learning framework to 3D medical imaging tasks, combined with the MONAI deep learning library. We train and evaluate the model using a large, openly available data set of annotated thoracic CT scans. Our model achieves a nodule classification accuracy of 92.4% and a ROC AUC of 97% when compared to a “ground truth” based on multiple human raters subjective assessment of malignancy. We further evaluate our approach by predicting patient-level diagnoses of cancer, achieving a test set accuracy of 75%. This is higher than the 70% obtained by aggregating the human raters assessments. Class activation maps are applied to investigate the features used by our classifier, enabling a rudimentary level of explainability for what is otherwise close to “black box” predictions. As the classification of structures in chest CT scans is useful across a variety of diagnostic and prognostic tasks in radiology, our approach has broad applicability. As we aimed to construct a fully reproducible system that can be compared to new proposed methods and easily be adapted and extended, the full source code of our work is available at https://github.com/MMIV-ML/Lung-CT-fastai-2020
2D and 3D U-Nets for skull stripping in a large and heterogeneous set of head MRI using fastai
Skull stripping in brain imaging is the removal of the parts of images corresponding to non-brain tissue. Fast and accurate skull stripping is a crucial step for numerous medical brain imaging applications, e.g. registration, segmentation and feature extraction, as it eases subsequent image processing steps. In this work, we propose and compare two novel skull stripping methods based on 2D and 3D convolutional neural networks trained on a large, heterogeneous collection of 2777 clinical 3D T1-weighted MRI images from 1681 healthy subjects. We investigated the performance of the models by testing them on 927 images from 324 subjects set aside from our collection of data, in addition to images from an independent, large brain imaging study: the IXI dataset (n = 556). Our models achieved mean Dice scores higher than 0:978 and Jaccard indices higher than 0:957 on all tests sets, making predictions on new unseen brain MR images in approximately 1.4s for the 3D model and 12.4s for the 2D model. A preliminary exploration of the models’ robustness to variation in the input data showed favourable results when compared to a traditional, well-established skull stripping method. With further research aimed at increasing the models’ robustness, such accurate and fast skull stripping methods can potentially form a useful component of brain MRI analysis pipelines
2D and 3D U-Nets for skull stripping in a large and heterogeneous set of head MRI using fastai
Skull stripping in brain imaging is the removal of the parts of images corresponding to non-brain tissue. Fast and accurate skull stripping is a crucial step for numerous medical brain imaging applications, e.g. registration, segmentation and feature extraction, as it eases subsequent image processing steps. In this work, we propose and compare two novel skull stripping methods based on 2D and 3D convolutional neural networks trained on a large, heterogeneous collection of 2777 clinical 3D T1-weighted MRI images from 1681 healthy subjects. We investigated the performance of the models by testing them on 927 images from 324 subjects set aside from our collection of data, in addition to images from an independent, large brain imaging study: the IXI dataset (n = 556). Our models achieved mean Dice scores higher than 0:978 and Jaccard indices higher than 0:957 on all tests sets, making predictions on new unseen brain MR images in approximately 1.4s for the 3D model and 12.4s for the 2D model. A preliminary exploration of the models’ robustness to variation in the input data showed favourable results when compared to a traditional, well-established skull stripping method. With further research aimed at increasing the models’ robustness, such accurate and fast skull stripping methods can potentially form a useful component of brain MRI analysis pipelines
Cognitive and MRI trajectories for prediction of Alzheimer’s disease
The concept of Mild Cognitive Impairment (MCI) is used to describe the early stages of Alzheimer’s disease (AD), and identification and treatment before further decline is an important clinical task. We selected longitudinal data from the ADNI database to investigate how well normal function (HC, n= 134) vs. conversion to MCI (cMCI, n= 134) and stable MCI (sMCI, n=333) vs. conversion to AD (cAD, n= 333) could be predicted from cognitive tests, and whether the predictions improve by adding information from magnetic resonance imaging (MRI) examinations. Features representing trajectories of change in the selected cognitive and MRI measures were derived from mixed effects models and used to train ensemble machine learning models to classify the pairs of subgroups based on a subset of the data set. Evaluation in an independent test set showed that the predictions for HC vs. cMCI improved substantially when MRI features were added, with an increase in F1-score from 60 to 77%. The F1-scores for sMCI vs. cAD were 77% without and 78% with inclusion of MRI features. The results are in-line with findings showing that cognitive changes tend to manifest themselves several years after the Alzheimer’s disease is well-established in the brain