105 research outputs found

    The nucleotide sequence of the genes coding for the S19 and L22 equivalent ribosomal proteins from Halobacterium halobium

    Get PDF
    AbstractThe primary structure of the two ribosomal protein genes of archaebacterium Halobacterium halobium has been determined. The encoded polypeptides are homologous to the Escherichia coli ribosomal proteins S19 and L22. The two genes constitute part of an operon whose organization is analogous to that of the ‘S10’ operon of E. coli

    Selective Protein Synthesis by Ribosomes with a Drug-Obstructed Exit Tunnel

    Get PDF
    SummaryThe polypeptide exit tunnel is an important functional compartment of the ribosome where the newly synthesized proteins are surveyed. The tunnel is the target of clinically important macrolide antibiotics. Macrolides plug the tunnel and are believed to stop production of all proteins. Contrary to this view, we show that drug-bound ribosomes can synthesize a distinct subset of cellular polypeptides. The structure of a protein defines its ability to thread through the antibiotic-obstructed tunnel. Synthesis of certain polypeptides that initially bypass translational arrest can be stopped at later stages of elongation while translation of some proteins goes to completion. Our findings reveal that small-molecule effectors can accentuate the discriminatory properties of the ribosomal exit tunnel and that macrolide antibiotics reshape the cellular proteome rather than block global protein synthesis

    Chemical engineering of the peptidyl transferase center reveals an important role of the 2′-hydroxyl group of A2451

    Get PDF
    The main enzymatic reaction of the large ribosomal subunit is peptide bond formation. Ribosome crystallography showed that A2451 of 23S rRNA makes the closest approach to the attacking amino group of aminoacyl-tRNA. Mutations of A2451 had relatively small effects on transpeptidation and failed to unequivocally identify the crucial functional group(s). Here, we employed an in vitro reconstitution system for chemical engineering the peptidyl transferase center by introducing non-natural nucleosides at position A2451. This allowed us to investigate the peptidyl transfer reaction performed by a ribosome that contained a modified nucleoside at the active site. The main finding is that ribosomes carrying a 2′-deoxyribose at A2451 showed a compromised peptidyl transferase activity. In variance, adenine base modifications and even the removal of the entire nucleobase at A2451 had only little impact on peptide bond formation, as long as the 2′-hydroxyl was present. This implicates a functional or structural role of the 2′-hydroxyl group at A2451 for transpeptidation

    Acquisition of a natural resistance gene renders a clinical strain of methicillin-resistant Staphylococcus aureus resistant to the synthetic antibiotic linezolid.

    Get PDF
    Linezolid, which targets the ribosome, is a new synthetic antibiotic that is used for treatment of infections caused by Gram-positive pathogens. Clinical resistance to linezolid, so far, has been developing only slowly and has involved exclusively target site mutations. We have discovered that linezolid resistance in a methicillin-resistant Staphylococcus aureus hospital strain from Colombia is determined by the presence of the cfr gene whose product, Cfr methyltransferase, modifies adenosine at position 2503 in 23S rRNA in the large ribosomal subunit. The molecular model of the linezolid-ribosome complex reveals localization of A2503 within the drug binding site. The natural function of cfr likely involves protection against natural antibiotics whose site of action overlaps that of linezolid. In the chromosome of the clinical strain, cfr is linked to ermB, a gene responsible for dimethylation of A2058 in 23S rRNA. Coexpression of these two genes confers resistance to all the clinically relevant antibiotics that target the large ribosomal subunit. The association of the ermB/cfr operon with transposon and plasmid genetic elements indicates its possible mobile nature. This is the first example of clinical resistance to the synthetic drug linezolid which involves a natural resistance gene with the capability of disseminating among Gram-positive pathogenic strains

    Structure of Erm-modified 70S ribosome reveals the mechanism of macrolide resistance

    Get PDF
    Many antibiotics inhibit bacterial growth by binding to the ribosome and interfering with protein biosynthesis. Macrolides represent one of the most successful classes of ribosome-targeting antibiotics. The main clinically relevant mechanism of resistance to macrolides is dimethylation of the 23S rRNA nucleotide A2058, located in the drug-binding site, a reaction catalyzed by Erm-type rRNA methyltransferases. Here, we present the crystal structure of the Erm-dimethylated 70S ribosome at 2.4 Å resolution, together with the structures of unmethylated 70S ribosome functional complexes alone or in combination with macrolides. Altogether, our structural data do not support previous models and, instead, suggest a principally new explanation of how A2058 dimethylation confers resistance to macrolides. Moreover, high-resolution structures of two macrolide antibiotics bound to the unmodified ribosome reveal a previously unknown role of the desosamine moiety in drug binding, laying a foundation for the rational knowledge-based design of macrolides that can overcome Erm-mediated resistance

    Nucleotide Biosynthesis Is Critical for Growth of Bacteria in Human Blood

    Get PDF
    Proliferation of bacterial pathogens in blood represents one of the most dangerous stages of infection. Growth in blood serum depends on the ability of a pathogen to adjust metabolism to match the availability of nutrients. Although certain nutrients are scarce in blood and need to be de novo synthesized by proliferating bacteria, it is unclear which metabolic pathways are critical for bacterial growth in blood. In this study, we identified metabolic functions that are essential specifically for bacterial growth in the bloodstream. We used two principally different but complementing techniques to comprehensively identify genes that are required for the growth of Escherichia coli in human serum. A microarray-based and a dye-based mutant screening approach were independently used to screen a library of 3,985 single-gene deletion mutants in all non-essential genes of E. coli (Keio collection). A majority of the mutants identified consistently by both approaches carried a deletion of a gene involved in either the purine or pyrimidine nucleotide biosynthetic pathway and showed a 20- to 1,000-fold drop in viable cell counts as compared to wild-type E. coli after 24 h of growth in human serum. This suggests that the scarcity of nucleotide precursors, but not other nutrients, is the key limitation for bacterial growth in serum. Inactivation of nucleotide biosynthesis genes in another Gram-negative pathogen, Salmonella enterica, and in the Gram-positive pathogen Bacillus anthracis, prevented their growth in human serum. The growth of the mutants could be rescued by genetic complementation or by addition of appropriate nucleotide bases to human serum. Furthermore, the virulence of the B. anthracis purE mutant, defective in purine biosynthesis, was dramatically attenuated in a murine model of bacteremia. Our data indicate that de novo nucleotide biosynthesis represents the single most critical metabolic function for bacterial growth in blood and reveal the corresponding enzymes as putative antibiotic targets for the treatment of bloodstream infections

    Molecular basis for erythromycin-dependent ribosome stalling during translation of the ErmBL leader peptide

    Get PDF
    In bacteria, ribosome stalling during translation of ErmBL leader peptide occurs in the presence of the antibiotic erythromycin and leads to induction of expression of the downstream macrolide resistance methyltransferase ErmB. The lack of structures of drug-dependent stalled ribosome complexes (SRCs) has limited our mechanistic understanding of this regulatory process. Here we present a cryo-electron microscopy structure of the erythromycin-dependent ErmBL-SRC. The structure reveals that the antibiotic does not interact directly with ErmBL, but rather redirects the path of the peptide within the tunnel. Furthermore, we identify a key peptide-ribosome interaction that defines an important relay pathway from the ribosomal tunnel to the peptidyltransferase centre (PTC). The PTC of the ErmBL-SRC appears to adopt an uninduced state that prevents accommodation of Lys-tRNA at the A-site, thus providing structural basis for understanding how the drug and the nascent peptide cooperate to inhibit peptide bond formation and induce translation arrest

    Ribosome engineering reveals the importance of 5S rRNA autonomy for ribosome assembly

    Get PDF
    5S rRNA is an indispensable component of cytoplasmic ribosomes in all species. The functions of 5S rRNA and the reasons for its evolutionary preservation as an independent molecule remain unclear. Here we used ribosome engineering to investigate whether 5S rRNA autonomy is critical for ribosome function and cell survival. By linking circularly permutated 5S rRNA with 23S rRNA we generated a bacterial strain devoid of free 5S rRNA. Viability of the engineered cells demonstrates that autonomous 5S rRNA is dispensable for cell growth under standard conditions and is unlikely to have essential functions outside the ribosome. The fully assembled ribosomes carrying 23S-5S rRNA are highly active in translation. However, the engineered cells accumulate aberrant 50S subunits unable to form stable 70S ribosomes. Cryo-EM analysis revealed a malformed peptidyl transferase center in the misassembled 50S subunits. Our results argue that the autonomy of 5S rRNA is preserved due to its role in ribosome biogenesis

    The 2016 Southeastern U.S. Drought: An Extreme Departure From Centennial Wetting and Cooling

    Get PDF
    The fall 2016 drought in the southeastern United States (SE U.S.) appeared exceptional based on its widespread impacts, but the current monitoring framework that only extends from 1979 to present does not readily facilitate evaluation of soil-moisture anomalies in a centennial context. A new method to extend monthly gridded soil-moisture estimates back to 1895 is developed, indicating that since 1895, October–November 2016 soil moisture (0–200 cm) in the SE U.S. was likely the second lowest on record, behind 1954. This severe drought developed rapidly and was brought on by low September–November precipitation and record-high September–November daily maximum temperatures (Tmax). Record-high Tmax drove record-high atmospheric moisture demand, accounting for 28% of the October–November 2016 soil-moisture anomaly. Drought and heat in fall 2016 contrasted with 20th century wetting and cooling in the region but resembled conditions more common from 1895–1956. Dynamically, the exceptional drying in fall 2016 was driven by anomalous ridging over the central United States that reduced south-southwesterly moisture transports into the SE U.S. by approximately 75%. These circulation anomalies were partly promoted by a moderate La Niña and warmth in the tropical Atlantic, but these processes accounted for very little of the SE U.S. drying in fall 2016, implying a large role for internal atmospheric variability. The extended analysis back to 1895 indicates that SE U.S. droughts as strong as the 2016 event are more likely than indicated from a shorter 60 year perspective and continued multidecadal swings in precipitation may combine with future warming to further enhance the likelihood of such events

    Molecular basis for erythromycin-dependent ribosome stalling during translation of the ErmBL leader peptide

    Get PDF
    In bacteria, ribosome stalling during translation of ErmBL leader peptide occurs in the presence of the antibiotic erythromycin and leads to induction of expression of the downstream macrolide resistance methyltransferase ErmB. The lack of structures of drug-dependent stalled ribosome complexes (SRCs) has limited our mechanistic understanding of this regulatory process. Here we present a cryo-electron microscopy structure of the erythromycin-dependent ErmBL-SRC. The structure reveals that the antibiotic does not interact directly with ErmBL, but rather redirects the path of the peptide within the tunnel. Furthermore, we identify a key peptide-ribosome interaction that defines an important relay pathway from the ribosomal tunnel to the peptidyltransferase centre (PTC). The PTC of the ErmBL-SRC appears to adopt an uninduced state that prevents accommodation of Lys-tRNA at the A-site, thus providing structural basis for understanding how the drug and the nascent peptide cooperate to inhibit peptide bond formation and induce translation arrest
    corecore