7,696 research outputs found
Carbon Dynamics and Land-Use Choices: Building a Regional-Scale Multidisciplinary Model
Policy enabling tropical forests to approach their potential contribution to global-climate-change mitigation requires forecasts of land use and carbon storage on a large scale over long periods. In this paper, we present an integrated modeling methodology that addresses these needs. We model the dynamics of the human land-use system and of C pools contained in each ecosystem, as well as their interactions. The model is national scale, and is currently applied in a preliminary way to Costa Rica using data spanning a period of over fifty years. It combines an ecological process model, parameterized using field and other data, with an economic model, estimated using historical data to ensure a close link to actual behavior. These two models are linked so that ecological conditions affect land-use choices and vice versa. The integrated model predicts land use and its consequences for C storage for policy scenarios. These predictions can be used to create baselines, reward sequestration, and estimate the value in both environmental and economic terms of including C sequestration in tropical forests as part of the efforts to mitigate global climate change. The model can also be used to assess the benefits from costly activities to increase accuracy and thus reduce errors and their societal costs.carbon, sequestration, climate change, land use, modelling
The Effect of Expansion on Mass Entrainment and Stability of Super-Alfv\'enic Jets
We extend investigations of mass entrainment by jets, which previously have
focused on cylindrical supermagnetosonic jets and expanding trans-Alfv\'enic
jets, to a set of expanding supermagnetosonic jets. We precess these jets at
the origin to excite the helical mode of the Kelvin-Helmholtz (or KH)
instability, in order to compare the results with predictions from linear
stability analysis. We analyze this simulation set for the spatial development
of magnetized mass, which we interpret as jet plus entrained, initially
unmagnetized external mass. As with the previous simulation sets, we find that
the growth of magnetized mass is associated with the growth of the KH
instability through linear, nonlinear, and saturated stages and with the
expansion of magnetized material in simulated observations of the jet. From
comparison of measured wavelengths and wave speeds with the predictions from
linear stability analysis, we see evidence that the KH instability is the
primary cause for mass entrainment in these simulations, and that the expansion
reduces the rate of mass entrainment. This reduced rate can be observed as a
somewhat greater distance between the two transition points separating the
three stages of expansion.Comment: 18 pages, 6 figures, AASTeX, to appear in Nov 1 issue of ApJ (vol
543), postscript versions of Figures 3 and 5 are available at
http://crux.astr.ua.edu/~rosen/supcon/rh.htm
Global first-passage times of fractal lattices
The global first passage time density of a network is the probability that a random walker released at a random site arrives at an absorbing trap at time T. We find simple expressions for the mean global first passage time for five fractals: the d-dimensional Sierpinski gasket, T fractal, hierarchical percolation model, Mandelbrot-Given curve, and a deterministic tree. We also find an exact expression for the second moment and show that the variance of the first passage time, Var(T), scales with the number of nodes within the fractal N such that Var(T)similar to N(4/d), where d is the spectral dimension
Fractal Scales in a Schwarzschild Atmosphere
Recently, Glass and Krisch have extended the Vaidya radiating metric to
include both a radiation fluid and a string fluid [1999 Class. Quantum Grav.
vol 16, 1175]. Mass diffusion in the extended Schwarzschild atmosphere was
studied. The continuous solutions of classical diffusive transport are believed
to describe the envelope of underlying fractal behavior. In this work we
examine the classical picture at scales on which fractal behavior might be
evident.Comment: to appear in Class. Quantum Gra
Lumbar Degenerative Disc Disease: Current and Future Concepts of Diagnosis and Management
Low back pain as a result of degenerative disc disease imparts a large socioeconomic impact on the health care system. Traditional concepts for treatment of lumbar disc degeneration have aimed at symptomatic relief by limiting motion in the lumbar spine, but novel treatment strategies involving stem cells, growth factors, and gene therapy have the theoretical potential to prevent, slow, or even reverse disc degeneration. Understanding the pathophysiological basis of disc degeneration is essential for the development of treatment strategies that target the underlying mechanisms of disc degeneration rather than the downstream symptom of pain. Such strategies ideally aim to induce disc regeneration or to replace the degenerated disc. However, at present, treatment options for degenerative disc disease remain suboptimal, and development and outcomes of novel treatment options currently have to be considered unpredictable
Approach-related anatomical differences in patients with lumbo-sacral transitional vertebrae undergoing lumbar fusion surgery at level L4/5
Introduction Lumbo-sacral transitional vertebrae (LSTV) are accompanied by changes in soft tissue anatomy. The aim of our retrospective study was to evaluate the effects of LSTV as well as the number of free lumbar vertebrae on surgical approaches of ALIF, OLIF and LLIF at level L4/5. Material and methods We assessed the CTs of 819 patients. Of these, 53 had LSTV from which 11 had six (6LV) and 9 four free lumbar vertebrae (4LV). We matched them for sex and age to a control group. Results Patients with LSTV had a higher iliac crest and vena cava bifurcation, a greater distance between the common iliac veins and an anterior translation of the psoas muscle at level L4/5. In contrast, patients with 6LV had a lower iliac crest and aortic bifurcation, no differences in vena cava bifurcation and distance between the iliac veins compared to the control group. Conclusions For patients with LSTV and five or four free lumbar vertebrae, the LLIF approach at L4/5 may be hindered due to a high riding iliac crest as well as anterior shift of the psoas muscle. Whereas less mobilization and retraction of the iliac veins may reduce the risk of vascular injury at this segment by ALIF and OLIF. For patients with 6LV, a lower relative height of the iliac crest facilitates lateral approach during LLIF. For ALIF and OLIF, a stronger vessel retraction due to the deeper-seated vascular bifurcation is necessary during ALIF and is therefore potentially at higher risk for vascular injury
An examination of business occupier relocation decision making : distinguishing small and large firm behaviour
This paper explores how business occupiers decide whether and where to relocate. It captures the experience and behaviour of a range of sizes and types of business occupier and subjects their decision-making processes to detailed scrutiny. A linear three-stage decision model is used to sequence and structure interviews with individuals who have intimate involvement with the relocation of 28 firms and organizations in Tyne and Wear, in the north-east of England. The 'constant comparative' method is used to analyse the interview data, from which emerges 18 key concepts, comprising 51 characteristic components. Using an axial approach, these are organized into 10 cross-cutting themes that represent the main areas of consideration or influence on the thinking of the people involved in determining whether a firm or organization should relocate and, if so, where to. The resulting analysis finds that organizations adopt varying degrees of sophistication when making relocation decisions; small firms are more inclined to make decisions based on constrained information; larger organizations adopt a more complex approach. Regardless of firm size, key individuals exert considerable influence over the decision-making process and its outcome
A tract-specific approach to assessing white matter in preterm infants.
Diffusion-weighted imaging (DWI) is becoming an increasingly important tool for studying brain development. DWI analyses relying on manually-drawn regions of interest and tractography using manually-placed waypoints are considered to provide the most accurate characterisation of the underlying brain structure. However, these methods are labour-intensive and become impractical for studies with large cohorts and numerous white matter (WM) tracts. Tract-specific analysis (TSA) is an alternative WM analysis method applicable to large-scale studies that offers potential benefits. TSA produces a skeleton representation of WM tracts and projects the group's diffusion data onto the skeleton for statistical analysis. In this work we evaluate the performance of TSA in analysing preterm infant data against results obtained from native space tractography and tract-based spatial statistics. We evaluate TSA's registration accuracy of WM tracts and assess the agreement between native space data and template space data projected onto WM skeletons, in 12 tracts across 48 preterm neonates. We show that TSA registration provides better WM tract alignment than a previous protocol optimised for neonatal spatial normalisation, and that TSA projects FA values that match well with values derived from native space tractography. We apply TSA for the first time to a preterm neonatal population to study the effects of age at scan on WM tracts around term equivalent age. We demonstrate the effects of age at scan on DTI metrics in commissural, projection and association fibres. We demonstrate the potential of TSA for WM analysis and its suitability for infant studies involving multiple tracts
Sub-mm detection of a high redshift Type 2 QSO
We report on the first SCUBA detection of a Type 2 QSO at z=3.660 in the
Chandra Deep Field South. This source is X-ray absorbed, shows only narrow
emission lines in the optical spectrum and is detected in the sub-mm: it is the
ideal candidate in an evolution scheme for AGN (e.g. Fabian (1999); Page et al.
(2004)) of an early phase corresponding to the main growth of the host galaxy
and formation of the central black hole. The overall photometry (from the radio
to the X-ray energy band) of this source is well reproduced by the spectral
energy distribution (SED) of NGC 6240, while it is incompatible with the
spectrum of a Type 1 QSO (3C273) or a starburst galaxy (Arp 220). Its sub-mm
(850 \mu m) to X-ray (2 keV) spectral slope (alpha_SX) is close to the
predicted value for a Compton-thick AGN in which only 1% of the nuclear
emission emerges through scattering. Using the observed flux at 850 \mu m we
have derived a SFR=550--680 M_dust=4.2 10^8 M_odotComment: 6 Pages, 5 Figures, accepted for publication in MNRA
A Comparison of the Morphology and Stability of Relativistic and Nonrelativistic Jets
We compare results from a relativistic and a nonrelativistic set of 2D
axisymmetric jet simulations. For a set of five relativistic simulations that
either increase the Lorentz factor or decrease the adiabatic index we compute
nonrelativistic simulations with equal useful power or thrust. We examine these
simulations for morphological and dynamical differences, focusing on the
velocity field, the width of the cocoon, the age of the jets, and the internal
structure of the jet itself. The primary result of these comparisons is that
the velocity field of nonrelativistic jet simulations cannot be scaled up to
give the spatial distribution of Lorentz factors seen in relativistic
simulations. Since the local Lorentz factor plays a major role in determining
the total intensity for parsec scale extragalactic jets, this suggests that a
nonrelativistic simulation cannot yield the proper intensity distribution for a
relativistic jet. Another general result is that each relativistic jet and its
nonrelativistic equivalents have similar ages (in dynamical time units, =
R/a_a, where R is the initial radius of a cylindrical jet and a_a is the sound
speed in the ambient medium). In addition to these comparisons, we have
completed four new relativistic simulations to investigate the effect of
varying thermal pressure on relativistic jets. The simulations generally
confirm that faster (larger Lorentz factor) and colder jets are more stable,
with smaller amplitude and longer wavelength internal variations. The apparent
stability of these jets does not follow from linear normal mode analysis, which
suggests that there are available growing Kelvin-Helmholtz modes. (Abridged.)Comment: 32 pages, AASTEX, to appear in May 10, 1999 issue of ApJ, better
versions of Figures 1 and 6 are available at
http://crux.astr.ua.edu/~rosen/rel/rhdh.htm
- …