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The global first passage time density of a network is the probability that a random walker released at a
random site arrives at an absorbing trap at time T. We find simple expressions for the mean global first passage
time �T� for five fractals: the d-dimensional Sierpinski gasket, T fractal, hierarchical percolation model,
Mandelbrot-Given curve, and a deterministic tree. We also find an exact expression for the second moment �T2�
and show that the variance of the first passage time, Var�T�, scales with the number of nodes within the fractal

N such that Var�T��N4/d̄, where d̄ is the spectral dimension.
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I. INTRODUCTION

The study of diffusion on statistically self-similar disor-
dered media �e.g., percolation clusters and diffusion limited
aggregates� is simplified by modeling their structure by de-
terministic fractals �1�. Although scaling theory has been
central in studying diffusive processes on a variety of deter-
ministic fractals �2�, it has been noted that scaling laws do
not provide a complete picture of dynamic phenomena on
fractals �3�, and exact relationships are useful.

Lately there has been interest in calculating the mean time
�T� taken for a walker released from a randomly chosen node
on a fractal to arrive at a trap. We call the underlying prob-
ability density of T the global first passage time �GFPT�. It is
found by a simple average of the node-to-trap first passage
times over the entire fractal. The mean of the GFPT was first
obtained for the Sierpinski gasket lattice by Kozak and Bal-
akrishnan �4,5�, and an analogous study has been recently
performed for the T fractal �6�. The mean �T� has been asso-
ciated �6� with important questions such as the exploration of
a random walker on a fractal lattice �7�, providing further
motivation for the study of global first passage times.

In general, deterministic fractals have played a key role in
explaining diffusion in disordered materials because their
properties can be exactly studied. In this paper we use a
renormalization method to derive an exact expression for the
full moment generating function of the GFPT. The method is
exact, and can be applied to any finitely ramified determin-
istic fractal, making the exploration of higher moments of
the GFPT possible. There is interest in higher moments of
random walk quantities �8,9� as such results give further in-
sight into the nature of transport on fractals. Knowledge of
these moments is also useful to investigate the variance of
the bimolecular reaction A+B→A �10�.

The paper is organized as follows. In Sec. II we formulate
the problem of continuum diffusion on networks of pipes as
an algebraic system of equations involving Laplace trans-
forms of the fluxes and concentrations at each node. We
show how the equations are solved on a d-dimensional Sier-
pinski gasket lattice using a renormalization procedure. In
Sec. III, we derive the general formula for the Laplace trans-
form of the GFPT density for a trap at an arbitrary node on
the gasket. We demonstrate our method for the apex of the
nth iteration of the d-dimensional gasket. Our results, for the

mean of the GFPT, agree with prior work �4,5�, and are
extended to show that, for any given trap, there is an exact
analytic expression for the moment generating function of
the GFPT.

In Sec. IV, we demonstrate that the method can be used to
calculate the GFPT moment generating function for at least
one node on any structure provided that a renormalization
procedure exists. A general formula is provided for the GFPT
moment generating function for a finitely ramified determin-
istic fractal with two end nodes. As examples we consider
the Mandelbrot-Given curve, deterministic tree, hierarchical
percolation model, and the T tree �6�. The calculation of
higher moments is demonstrated for the T tree in Sec. V.

II. CONTINUUM DIFFUSION ON NETWORKS

We begin by solving the diffusion equation

D
�2

�x2C�x,t� =
�

�t
C�x,t� �1�

on a bar of length L with the nonhomogeneous boundary
conditions

C�0,t� = P1�t�, C�L,t� = P2�t� ,

and initial condition C�x ,0�=0. Taking Laplace transforms
of Eq. �1� and solving using the boundary and initial condi-
tions we find

c�x,s� = p2�s�
sinh�x	 s

D



sinh�L	 s

D

 + p1�s�

sinh��L − x�	 s

D
�

sinh�L	 s

D

 ,

�2�

where we denote Laplace transformed functions by lower
case letters;

c�x,s� = L�C�x,t��  �
0

�

C�x,t�e−stdt .

The flux entering the bar at the point x=0 is F1

= �−D �
�xC�x , t��x=0 and the flux entering the bar at x=L is

F2= �D �
�xC�x , t��x=L. For networks it is useful to express these
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fluxes in terms of the concentrations pi at either end. This
gives rise to the equations

g� f1

f2
� = � 1 − sech�	 s

D
L


− sech�	 s

D
L
 1 ��p1

p2
� ,

�3�

where g=tanh�	 s
DL� /	sD. We call the above a flux-

concentration matrix. For simplicity we set D and L to be
unity.

Using these relations, diffusion on an arbitrary network
can be formulated as a system of algebraic equations. To link
two or more bars at a node we set the concentrations to be
equal. As an example the system for the first iteration of the
Sierpinski gasket lattice shown in Fig. 1�a� is

g�
f1

f2

f3

f4

f5

f6

� = �
2a0 − b0 − b0 0 0 0

− b0 4a0 − b0 − b0 − b0 0

− b0 − b0 4a0 0 − b0 − b0

0 − b0 0 2a0 − b0 0

0 − b0 − b0 − b0 4a0 − b0

0 0 − b0 0 − b0 2a0

��
p1

p2

p3

p4

p5

p6

� .

�4�

Here a0=1 and b0=sech�	s�.

A. Initial and boundary conditions

The f i in Eq. �4� are understood to represent the total flux
entering node i. For mass conservation f i=0, but if we take
an instantaneous unit source at node i, then the flux entering
the node is Fi=��t�, where ��t� is the Dirac � function. This
means that f i=L�Fi�=L���t��=1. The matrix has a similar
form to a simple finite difference scheme for modeling dif-
fusion and probability on a lattice. Prior studies �11–13� have
also formulated the problem of diffusion on networks in

terms of the Laplace transform of the concentration and flux
at a node. Here, linear algebra is used to extend these ideas.

It is useful to illustrate the formulation of two different
but closely related problems. If we take fT= �0,0 ,0 ,0 ,0 ,1�
the solution pT= �p1 , p2 , p3 , p4 , p5 , p6� provides the Laplace
transforms of the concentrations at the nodes if an instanta-
neous source is released at node 6, and mass is conserved at
every node �including node 6�. Next consider taking fT

= �1,0 ,0 ,0 ,0 , f6�� and pT= �p1� , p2� , p3� , p4� , p5� ,0� and solving
the six equations for pi� �i=1, . . . ,5� and f6�. In this case the
equations correspond to an instantaneous source at node 1, a
homogenous Dirichlet condition �i.e., a trap� at node 6, and
mass conservation at nodes i=1, . . . ,5. The quantity f6� is just
the flux entering at the “trap.” It can be shown �14� that this
flux can be calculated from p1 and p6 derived in the former
problem, the result being f6�=−p1 / p6. Note the negative sign
arises from our convention for defining the flux. The result �a
convolution in time� can also be derived using a continuum
random walker argument. We use a generalization of this
result in Sec. III.

B. First passage times and concentrations

In order to analyze the flux-concentration matrix for
higher order generations of the Sierpinski gasket we apply a
renormalization method. We first show how the 6�6 system
�4� can be reduced to a 3�3 system associated with the 0th
order Sierpinski gasket �see Fig. 1�b��

g� f1

f2

f3
� = � 2a0 − b0 − b0

− b0 2a0 − b0

− b0 − b0 2a0
��p1

p2

p3
� . �5�

To do this we consider the three equations associated with
nodes 2, 3, and 5 in Eq. �4�

�0

0

0
� = �− b0 4a0 − b0 − b0 − b0 0

− b0 − b0 4a0 0 − b0 − b0

0 − b0 − b0 − b0 4a0 − b0
��

p1

p2

p3

p4

p5

p6,

� ,

where we have set f2=0, f3=0, and f5=0. Solving this under
determined system gives

�p2

p3

p5
� =

1

�4�0 + 1��2�0 − 1��
2

�0

2

�0
1

2

�0
1

2

�0

1
2

�0

2

�0

��p1

p4

p6
� , �6�

where �0=
a0

b0
. Eliminating p2, p3, and p5 from Eq. �4� by

using Eq. �6� gives

2

4 65

3

1 1

2 3

(a) (b)

FIG. 1. �a� First iteration of the Sierpinski Gasket lattice. �b�
Zeroth iteration of the Sierpinski gasket lattice. The labeling used in
the above �a� and �b� implies that the left corner of the nth iteration
of the 2D Sierpinski gasket lattice is denoted by 3�3n+1� /2−2n, the
right corner by 3�3n+1� /2 and the apex by 1.
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g� f1

f4

f6
� = � 2a1 − b1 − b1

− b1 2a1 − b1

− b1 − b1 2a1
��p1

p4

p6
� ,

with

b1 =
a1b0

2

a0�4a0 − 3b0�
=

b0
2�2a0 + b0�

�2a0 − b0��4a0 + b0�
.

Note that this flux-concentration matrix is of the same form
as a flux-concentration matrix �5� of the triangle in Fig. 1�b�.
Continuing, we find that the system of equations for the nth
iteration of the Sierpinski gasket has the form �5� with a0 and
b0 replaced by

an = �nbn = �n
bn−1�2�n−1 + 1�

�4�n−1 + 1��2�n−1 − 1�
. �7�

Here �n is the renormalization of the inverse FPT equation
on a 2D Sierpinski gasket, which satisfies

�n = �n−1�4�n−1 − 3� .

A detailed discussion of the equation can be found in Refs.
�15–17�.

The recurrence relationship for the d-dimensional Sierpin-
ski gasket lattice is

an = �nbn = �n
�d�n−1 + 1�bn−1

�d�n−1 − �d − 1���2d�n−1 + �3 − d��
, �8�

where

�n�d� = 2d�n−1
2 − 3�d − 1��n−1 + �d − 2� �9�

is the renormalization of the inverse FPT equation in d di-
mensions. Equation �9� has been derived in Refs. �18,19�,
however, the above recurrence relationships �7� and �8� are
new, and allow the concentration to be calculated every-
where within the nth iteration of the d-dimensional Sierpin-
ski gasket lattice given that an instantaneous unit source is
released at a corner of the structure.

Before proceeding, a comment needs to be made about
Eq. �6�. The relation between the concentrations calculated in
Eq. �6� holds for any iteration. By this it is understood that if
p2 , p3 , p5 can be expressed in terms of p1 , p4 , p6 through Eq.
�6� using �0 for the first iteration of the Sierpinski gasket,
then p4 , p6 , p13 can be expressed in terms of p1 , p11, p15
through Eq. �6� using �1 on the second iteration of the 2D
Sierpinski gasket. In our notation �Fig. 1�, node 13 is the mid
base node equidistant to the nodes 11 and 15, with the other
nodes having a similar labeling to Fig. 1. The fact that the
concentrations at the nodes can be expressed through Eq. �6�
will be used when we derive a similar relation that holds for
the concentrations at the nodes of other fractal structures in
Sec. IV.

III. FIRST PASSAGE TIME

Let Fkj�t� be the first passage time for a random walker
released at node j to reach node k. The GFPT is given by

Fk�t� =
1

N
�

j=1,j�k

N+1

Fkj�t� ,

where N+1 is the total number of nodes and N the number of
starting nodes on the fractal. Let pkj,n be the concentration at
a node k given that an instantaneous unit source is released at
a node j, and there is no loss of mass at all nodes �the first
problem discussed in Sec. II A�. The additional subscript n
denotes the iteration of the fractal. As in Sec. II A we con-
sider a complementary problem where a trap is placed at
node k and a unit source is released at node j. The flux
“entering” at k due to the source at j is

fkj,n = −
pjk,n

pkk,n
.

The Laplace transform of the GFPT for node k is

fk,n =
1

N
�− 1 + �

j=1

N+1

�f jk,n�
 =
1

N
�− 1 +

�
j=1

N+1

pjk,n

pkk,n

� . �10�

The mean of the GFPT is

�Tk,n� = �
0

�

tFk�t�dt = � −
dfk,n�s�

ds
�

s=0
.

The form of fk,n �10� is simplified for the Sierpinski gasket
through the use of conservation of probability. We integrate
Eq. �2� for every pipe of the gasket and sum to find

d��k,n + 2�k,n��cosh�	s� − 1�
	s sinh�	s�

=
1

s
. �11�

Here �k,n is the sum of concentrations at the corner nodes
and the apex for the closed Sierpinski gasket and �k,n is the
sum of the concentrations at the other �d+1���d+1�n−1� /2
nodes. Note that Eq. �11� is true because there are d pipes
stemming from the corner nodes and there are 2d pipes stem-
ming from each interior node.

Using the method of images we show that �k,n= p1k,n−1.
Here we have identified the apex of the nth iteration of the
d-dimensional Sierpinski gasket by the label 1. We consider
the release of a walker at point k=2 of the second iteration of
the 2D gasket �see Fig. 2�a�� to show the result, but the
extension to arbitrary k and higher dimensions is clear. We
first place an additional five sources at the image points of

(c)(b)(a)

FIG. 2. Illustration of the method of images argument used to
prove the result �k,n= p1k,n−1. The filled circles denote sources and
the open circles are the concentrations of interest.
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k=2 in the three lines of symmetry of the gasket �Fig. 2�b��.
If we denote the sum of concentrations at the corner and
apex nodes by �2,2� , then it can easily be seen �through sym-
metry� that �2,2=�2,2� /6. Now, by symmetry, there will be no
flux between the three 1st iteration gaskets used to construct
the second iteration, and each problem �see Fig. 2�c�� can be
treated alone. It is clear that the concentration at the apex of
the reduced problem is 2p12,1. Therefore, �2,2� =3�2p12,1� and
finally �2,2= p12,1. For a source at a point which lies on a line
of symmetry �such as a corner�, only two copies of the
source need to be considered. In the above argument k is
limited to values which appear in the �n−1�th iteration. All
other points in the nth iteration have an image point corre-
sponding to an acceptable k value.

Using Eq. �11� reduces the GFPT �10� to

fk,n =
1

2N
� pkk,n

−1 sinh�	s�

d	s�cosh�	s� − 1�
+

�k,n

pkk,n
− 2
 , �12�

where N�d�= ��d+1�n+1+d−1� /2 is the number of starting
nodes. Setting �k,n= p1k,n−1 in Eq. �12� gives

fk,n =
1

2N
� pkk,n

−1 sinh�	s�

d	s�cosh�	s� − 1�
+

p1k,n−1

pkk,n
− 2
 . �13�

As an example, consider a trap at the apex which requires
evaluation of p11,n, which is provided in Eq. �A3� of Appen-
dix A. After simplification the moment generating function
of the GFPT for a trap at the apex is

f1,n =
1

2N
� d�n + 1

d�n − �d − 1�
− 2 + �

j=0

n
d� j + 1

d� j − �d − 1�
 . �14�

Note that the diffusion equations and first passage times
considered above correspond to a continuous-space/
continuous-time random walker. We have chosen to formu-
late the problem in this way because it makes the working
significantly simpler. For example, Eq. �10� applies to all
networks, while it must be modified to account for local
coordination numbers in the discrete formulation. From
fk,n�s� we can find results for discrete-time or discrete-space
walkers using the simple transformation discussed below.

Let F
kj
* �m� denote the probability that a walker released at

j arrives at k on the mth step for the first time, so the GFPT
is given by

F
k
*�m� =

1

N
�

j=1,j�k

N+1

F
jk
* �m� .

Here, and below, we denote quantities associated with a dis-
crete walker by an asterisk. The moment generating function
of F

kj
* �m� is defined as

f
kj
* ��� = �

m=0

�

F
kj
* �m�em�.

f
kj
* ��� is the counter part of fkj�s� descibed above �the

iteration for the fractal is irrelevant here�. The two quantities
are related by

f
kj
* ��� = fkj��arsech�e���2� .

For example, on a single bar T
12
* �m�=�m1, so f

12
* ���=e�

and for a continuum walker f12�s�=1 /�0�s�=sech�	s�.
A derivation of the transformation is given in Appendix B.

Thus, the moment generating function of the GFPT for a
discrete walker is given by

f
k
*��� = fk��arsech�e���2� , �15�

so we can write

�T
k
*� = �

m=0

�

mF
k
*�m� = � df

k
*���

d�
�

�=0
.

Since the location of the trap is generally clear, we simply
write the mean as �T*�. To explicitly calculate F

k
*�m�, we

form the probability generating function f
k
*�ln�z�� and note

that F
k
*�m� is the coefficient of the mth term of the Taylor

series expansion of f
k
*�ln�z�� about z=0.

For the remainder of the paper, we first calculate fk�s�,
and then use Eq. �15� to determine f

k
*���. For the Sierpinski

gasket example, a Taylor series exansions of the moment
generating function f

k
*��� �Eq. �14� with Eq. �15�� determines

the moments of the GFPT:

f1,n
* ��� = 1 +

��d + 1�n��d + 3�n+1 − 1� + �d + 2��d + 3�n�d2

��d + 1�n+1 + d − 1��d + 2�
�

+ O��2� . �16�

The coefficient of � is the mean GFPT which matches the
results found in Refs. �4,5�. The first and higher moments of
the GFPT for alternative nodes can be calculated using our
method. For example, the GFPT for a trap at the midbase of
the 2D Sierpinski gasket is

fk,n�s� =
1

2N
� �2�n − 1�

�n
�
j=0

n
2� j + 1

2� j − 1
− 2 +

4�n−1 − 1

�n

 ,

where k=3�3n−1+1� /2−2n−1 for n�1, using the labeling in
Fig. 1. For a discrete walker, we find

�T*� =
2�15n� − 3n + 11�5n−1�

3n+1 + 1
.

IV. METHOD FOR OTHER RENORMALIZABLE
STRUCTURES

For completeness it is useful to determine whether f
k,n
* ���

for any finitely ramified deterministic structure can be found.
In the next section we are able to obtain at least one exact
analytic expression. f

k,n
* ��� for other structures can also be

calculated depending on the coordination number of the
nodes in the network. For the Sierpinski gasket a simple
expression for f

k,n
* ��� can be found for more than one node.

This is due partly to the structure of the Sierpinski gasket,
where every node is connected to 2d other nodes with the
exception of the corners. In that case, conservation of prob-
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ability simplified the solution but such a formula might not
exist for other structures. However, for all finitely ramified
deterministic fractals there is always a renormalization
scheme which allows us to calculate f

k,n
* ��� for the case of an

end node.
In the next section, we will always calculate fk,n�s� for

node 1. The trick in determining Eq. �10� is to express the
concentrations at the interior nodes in terms of the concen-
trations at the exterior �end� nodes. This is relevant when
calculating Eq. �10� in terms of the concentrations through-
out the fractal, which can then be explicitly written as a
function of the renormalization of the inverse FPT equation.
f

k,n
* ��� can then be found from Eq. �15�. As examples we

calculate f
k,n
* ��� for four different fractals.

A. Deterministic tree

For the deterministic tree �Fig. 3� we calculate fk,n�s� for
the end node 1. We can relate the concentrations at the nodes
2 to 4, for the iteration n=0, to the concentrations at nodes 1
and 5 in the following way:

�p21,0

p31,0

p41,0
� =

1

2�2�0
2 − 1���0 �0

1 1

1 1
��p11,0

p51,0
� . �17�

Here �n+1=4�n
2−3 is the renormalization of the inverse FPT

equation. We can deduce from Eq. �17� that

�
i=2

4

pi1,0 =
�0 + 2

2�2�0
2 − 1�

�18�

and also that

�
i=1

5

	ipi1,0 =
2�0�1 + �0�

2�0
2 − 1

, �19�

where 	i is the coordination number associated with the ith
node. These equations are essential, as they can be used re-
peatedly on any iteration of the deterministic tree to express
the concentrations at the interior nodes in terms of the con-
centrations at the nodes 1 and 5. This will now be demon-
strated for iteration 1, shown in Fig. 3, which we label con-
sistently with iteration 0 �we are not concerned with the
labeling of the new nodes�. We denote 
2j to be the sum of
the concentrations at the nodes between node 2 �i.e., the
center node� and node j on iteration 1. Using Eq. �18�


21 =
�0 + 2

2�2�0
2 − 1�

�p11,1 + p21,1� .

Repeating this process for all unlabeled nodes and summing
leads to


21 + 
23 + 
24 + 
25 =
�0 + 2

2�2�0
2 − 1��i=1

5

	ipi1,1.

The final step is recalling �Sec. II� that if the sum of concen-
trations on the LHS of Eq. �19� gives the RHS of Eq. �19�
with �0 for iteration 0, then one can automatically assume
that the LHS of Eq. �19� gives the RHS of Eq. �19� with �0
being replaced by �1 for iteration 1. In doing so, one finds the
sum of the concentrations at all non-labeled nodes on the
fractal at iteration 1 is


21 + 
23 + 
24 + 
25 =
��0 + 2��1 + �1��1

�2�0
2 − 1��2�1

2 − 1�
.

Furthermore, one can show that all concentrations at any
node at any iteration can be expressed in terms of the con-
centrations at nodes 1 and 5 with the sum of concentrations
at every node being

�
j=1

N

pj1,n = �p11,n + p51,n�

� �1 + �
m=0

n � ��m + 2�
�4�m

2 − 2� �
i=m+1

n

2
�i��i + 1�
2�i

2 − 1

� .

We know that there are exactly N=4n+1 starting nodes, so
f1,n�s� can be calculated from Eq. �10�

f1,n�s� =
1

N� 1

�n+1
+ �1 +

1

�n+1



� �
m=0

n � ��m + 2�
�4�m

2 − 2� �
i=m+1

n

2
�i��i + 1�
2�i

2 − 1

� .

Substituting for � �15� and taking Taylor series expansions
gives

f1,n
* ��� = 1 + �3�2n−1� +

6

7
81+n −

17

28

� + O��2� .

More generally, one can construct a formula for any fi-
nitely ramified determinstic fractal, provided that it has two
end nodes each having a coordination number of 1. In this
case, one can find the following quantities:

y1��0� =
1

p11,0 + p�1,0
�
�

p�1,0, �20�

where � is an interior node and

y2��0� =
1

p11,0 + p�1,0
�
j=1

N

	 jpj1,0. �21�

For consistency we always let 1 and � represent the two end
nodes of the nth iteration of the specific fractal. One can then

1 2 5 1 2

3

4

5

3

4

(a) (b)

FIG. 3. Deterministic tree �a� n=1 �b� n=0. The labeling of the
nodes 1 to 5 remain the same regardless of the iteration.
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show that the GFPT density for a random walker to arrive at
node 1 can be expressed as

f1,n�s� =
1

N� p�1,n

p11,n
+ �1 +

p�1,n

p11,n

�

m=0

n �y1��m� �
i=m+1

n

y2��i�
� ,

which becomes, using the fact that p�1,n / p11,n=�n+1
−1 ,

f1,n�s� =
1

N��n+1
−1 + �1 + �n+1

−1 ��
m=0

n �y1��m� �
i=m+1

n

y2��i�
� .

�22�

Here �n is the renormalization of the inverse FPT equation of
the nth iteration of a finitely ramified deterministic fractal
with two end nodes 1 and �. To calculate �T*� for discrete
walkers we use ��

n
*�����=0=1, and the first derivative of

�
n
*��� given in Table I. The method will be demonstrated on

three simple examples.

B. T tree

Consider the T tree shown in Fig. 4. The decimation pro-
cedure assumes that flux leaves only through the end nodes 1
and 4 for every iteration n. The concentrations at nodes 2 and
3 for the iteration n=0 can be expressed in terms of the
concentrations at nodes 1 and 4 in the following way:

�p21,0

p31,0
� =

1

3�0
2 − 1

��0 �0

1 1
��p11,0

p41,0
� .

Hence, the quantities defined in Eqs. �20� and �21� are

y2��0� = 3�0y1��0� = 3
�0�1 + �0�
3�0

2 − 1
.

We use the renormalization of the inverse FPT equation
�n+1=3�n

2−2 and N=3n+1 in Eq. �22�, to find

f1,n�s� =
1

N��n+1
−1 + �1 + �n+1

−1�

� �
m=0

n � �1 + �m�
3�m

2 − 1
�

i=m+1

n

3
�1 + �i��i

3�i
2 − 1


� . �23�

Substituting for � �15� in Eq. �23� and taking Taylor series
expansions gives

f1,n
* ��� = 1 + �2n+2

3
+

4

5
6n+1 −

7

15

� + O��2� .

The mean coincides with �T*� for a trap at the center �node
2� of the T tree of iteration n−1 �replace n by n−1 in the
above formula�, which agrees with Ref. �6�. For the next two
examples we just state N, the renormalization of the inverse
FPT equation, and the two essential quantities y1��0� ,y2��0�.

C. Mandelbrot-Given curve

The Mandelbrot-Given curve is shown in Fig. 5. We find
that N= �6�8n+1�+1� /7, �n+1=−21�n+13 /2�n

−1−1 /2�n
−3

+16�n
3,

y1��0� =
2�0

2 + 2�0 − 1

8�0
3 − 6�0

2 − 2�0 + 1

and

y2��0� =
2�0�4�0

2 + �0 − 1�
8�0

3 − 6�0
2 − 2�0 + 1

.

Substituting these expressions into Eq. �22�, we find in the
usual way that

f1,n
* ��� = 1 + 4/7

1518�176n� − 39�8n� + 187�22n�
1 + 48�8n�

� + O��2� .

The coefficient of � is the mean GFPT for a random walker
to reach node 1 of the nth iteration of the Mandelbrot-Given
curve.

D. Hierarchical percolation model

The hierarchical percolation model shown in Fig. 6 has
the properties N= �2�4n+1�+1� /3, �n+1=�n�9�n

2−7� /2 and

(b)(a)

1 1

FIG. 5. Mandelbrot-Given curve �a� n=1, �b� n=0.

TABLE I. The first and second derivates of �
n
*���, evaluated at

�=0, for the d-dimensional Sierpinski gasket, the Mandelbrot-
Given curve �MG�, the T tree, the deterministic tree �D�, and the
hierarchical percolation model �HP�.

Lattice ��
n
*�� ��

n
*��

Sierpinski −�d+3�n �4d�d+3�n+d+6+d2�/
��d+3�1−n�2+d��

MG curve −22n 22n−1�359+103�22n�� /21

T tree −6n 6n�4+6n� /5

D tree −8n 8n�6+8n� /7

HP model −10n 10n−1�7+3�10n��

1 2 4

3

1 2 4

3

(a) (b)

FIG. 4. The T tree �a� n=1, �b� n=0. The labeling of the nodes
remains the same for all iterations.
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y2��0� = �3�0 + 1�y1��0� =
�3�0 + 1�
3�0 − 2

.

Using these results in Eq. �22�, transforming to �, and taking
Taylor series expansions gives

f1,n
* ��� = 1 + 2

10n+1 + 30�40n� − 4n

1 + 2�4n+1�
� + O��2� .

Here, as in all other examples, the coefficient of � is the
mean of the GFPT for node 1.

V. SCALING OF HIGHER ORDER MOMENTS

To find higher moments of the GFPT, it is necessary to
calculate higher derivatives of �

n
*���. We have given the rel-

evant results in Table I. As an example, we calculate the
second moment of the GFPT on a T tree. From the coeffi-
cient of �2 in the Taylor expansion of f

n
*��� �Eq. �23� with

Eq. �15�� we find that the second moment is given by

��T*�2� =
72

5
12n −

16

15
2n +

8928

175
36n −

208

25
6n +

53

175
.

�24�

It is interesting to examine how the first and second mo-
ments, expressed as a function of the number of nodes NT

=N+1, scale with the spectral dimension d̄ �20�. Usually, d̄ is
determined through the analysis of the concentration at the
origin C0�t�, which is known to scale as

C0�t� � t−d̄/2.

In Ref. �4,5�, the mean GFPT expressed in terms of the total
number of nodes NT on the Sierpinski gasket was related to

the spectral dimension d̄=2 ln�d+1� / ln�d+3�. This was done
by rearranging the formula for the number of nodes on a
d-dimensional gasket, NT=N+1= �d+1���d+1�n+1� /2, to

set �d+1�n=NT
2

d+1 −1 and �d+3�n= �NT
2

d+1 −1�2/d̄. Substitut-
ing these values into Eq. �16� and taking the limit for large

NT gives �T*��NT
2/d̄.

We perform a similar analysis for the second moment of
the GFPT given in Eq. �24�. There are NT=3n+1+1 nodes
available on the nth iteration of the T fractal. By replacing 3n

by �NT−1� /3 and 2n by ��NT−1� /3�2/d̄−1 in the expression for
the second moment of the GFPT �24� we find

��T*�2� = 6/5�NT − 1�4/d̄−1 −
8

15
�NT − 1�2/d̄−1 +

248

175
�NT − 1�4/d̄

−
104

75
�NT − 1�2/d̄ +

53

175
. �25�

Asymptotically we find that ��T*�2��NT
4/d̄. Since we have an

exact expression for the mean and second moment we can
show that the variance scales as

Var�T*� � NT
4/d̄. �26�

All other structures considered above yield the same
asymptotic behavior.

VI. CONCLUSION

We have used the properties of the renormalization of the
first passage time equation to find the first passage time mo-
ment generating function for a variety of fractals. From this,
we were able to derive simple expressions for the first and
second moments of the global first passage time.

Our results can be applied to a diffusion controlled reac-
tion experiment of the form A+B→B. Here A is a particle
which performs a random walk on the structure until it is
absorbed by a single immobile particle B. If there are an
infinite number of A particles then the reaction rate at node k
is the deterministic function F

k
*�m�. This reaction rate, at

node k=1, for the gasket in two and three dimensions, and
the hierarchical percolation model, is shown for small time
in Fig. 7. The first and second moment we have calculated
are the moments of the reaction rate. An alternate experiment
would involve a single walker, in which case the expected
time of completion is �T� with the outcome being extremly

variable, the variance being given by Var�T*��NT
4/d̄.

(b)
1

(a)
1

FIG. 6. Hierarchicial percolation model �a� n=1, �b� n=0.

0 5 10 15 20

0.1

0.2

0.3

0.4

0.5

0.6

m

N
F

* 1(m
)

FIG. 7. The normalized probability for a random walker to ar-
rive at a trap at node 1 on the mth jump for the 10th iteration of the
Sierpinski gasket �d=2� ���, Sierpinski gasket �d=3� ���, and the
hierarchical percolation model ���. The values are calculated from
the Taylor series of the GFPT generating function f

1
*�ln�z��. A sym-

bolic algebra package was used.
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Since the variance of the first passage time scales as Eq.
�26�, we relate the variance to the mean by calculating the
reduced moment R�NT�=Var�T*�1/2 / �T*�. This type of ap-
proach has been used in the study of the variance of the
range of an n-step random walk �8,21�. As in Ref. �21� we
expect that limNT→�R�NT� exists and remains finite, for every

fractal structure with a spectral dimension of d̄2. Using
Eq. �14�, we find the reduced second moment for the Sier-
pinski gasket to be

lim
NT→�

R�NT� = �1 +
8

�d + 3��d + 4�d

1/2

,

which decreases monotonically with d.
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APPENDIX A: CORNER CONCENTRATIONS

Here we show how the concentration at the apex and the
corners of the nth iteration of the d-dimensional Sierpinski
gasket can be calculated if a walker is released at the apex.
We define pc�i�1,n to be the concentration at the i=1¯d cor-
ners of the gasket. Recall that the concentration at the apex is
given by p11,n. The flux-concentration matrix has the simple
�circulant� form

�
1

0

]

0
� =�

dan − bn . . . − bn

− bn dan − bn ]

] ] � ]

− bn . . . − bn dan

��
p11,n

pc�1�1,n

]

pc�d�1,n

� .

This is the natural extension of Eq. �5�, with an and bn de-
fined in Eq. �8�. The solution of the equations are

pc�i�1,n =
bn

d�an − bn��dan + bn�
=

1

dbn��n − 1��d�n + 1�
�A1�

for i=1, . . . ,d and

p11,n =
�dan − �d − 1�bn�

d�an − bn��dan + bn�
=

�d�n − �d − 1��
dbn��n − 1��d�n + 1�

.

�A2�

If we use the renormalization of first passage time equation
�n�d�=2d�n−1

2 −3�d−1��n−1+ �d−2� �see Eq. �9�� on the term
��n−1� in p11,n �A2�, we find that

p11,n =
�d�n − �d − 1��

dbn�2d�n−1 − d + 3���n−1 − 1��d�n + 1�
.

Using

bn =
�d�n−1 + 1�bn−1

�d�n−1 − �d − 1���2d�n−1 + �3 − d��
,

we obtain

p11,n =
�d�n−1 − �d − 1��

dbn−1��n−1 − 1��d�n−1 + 1�
�d�n − �d − 1��

�d�n + 1�
.

Note the similarities with Eq. �A2�. If we repeat the above
procedure we get the result

p11,n =
sinh�	s�

d	s�cosh�	s� − 1�
�
j=0

n
d� j − �d − 1�

d� j + 1
. �A3�

The concentration at the corner points, defined in Eq. �A1�,
can be found using the same procedure used above. The
result can be expressed as pc�i�1,n= p11,n / �d�n− �d−1��. From
the two preceeding results it can be shown that p11,n
+dpc�i�1,n= p11,n−1 which agrees with the more general result
given in Sec. III.

APPENDIX B: CONTINUUM TO DISCRETE
TRANSFORMATIONS

The results we derive for a continuous space/continuous
time random walker can be applied to a discrete walker by
simple transformations. For a discrete walker the probability
flux and probabilities at ends 1 and 2 of a bar are related by

F1
*�m� =

P1
*�m�

	1
−

P2
*�m − 1�

	2
,

F2
*�m� =

P2
*�m�

	2
−

P1
*�m − 1�

	1
,

where m�0 and 	i is the coordination number of the ith
node. These equations are quite formal and are easier to un-
derstand when they are combined for a network.

Multiplying both equations by zn and summing from n
=0, . . . ,� leads to

� f̂1

f̂2

� = � 1/	1 − z/	2

− z/	1 1/	2
��p̂1

p̂2
� , �B1�

where p̂i�z�=�m=0
� P*�m�zm is the probability generating

function of P*�m�. We have used the fact that �i=0
� P

i
*�m

−1�zm= P
i
*�−1�+z�i=0

� P
i
*�m�zm and define P

i
*�−1�=0. Equa-

tion �B1� is the direct analog of Eq. �3�.
The transformations we need to derive are most easily

shown by example. Using Eq. �B1� for the first iteration of
the 2D Sierpinski gasket gives
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�
f̂1

f̂2

f̂3

f̂4

f̂5

f̂6

� = �
a0 −

b0

4
−

b0

4
0 0 0

−
b0

2
a0 −

b0

4
−

b0

2
−

b0

4
0

−
b0

2
−

b0

4
a0 0 −

b0

4
−

b0

2

0 −
b0

4
0 a0 −

b0

4
0

0 −
b0

4
−

b0

4
−

b0

2
a0 −

b0

2

0 0 −
b0

4
0 −

b0

4
a0

��p̂1

p̂2

p̂3

p̂4

p̂5

p̂6

� ,

�B2�

where a0=1 and b0=z. We release a walker at site 1 at t=0
and place a trap at site 6 with probability conservation at
other nodes. This means p̂T= �p̂1 , p̂2 , p̂3 , p̂4 , p̂5 ,0� and f̂T

= �1,0 ,0 ,0 ,0 , f̂6�, where − f̂6 is the probability generating
function of the first passage time. The matrix equation given
above can also be directly derived from the equations gov-
erning the probability of a discrete walker on the gasket �i.e.,
P

1
*�m+1�= P

2
*�m� /4+ P

3
*�m� /4 for node 1, etc.�. The initial

and boundary conditions are represented in our flux vector.
If we write the matrix equation �B2� as f̂=Ap̂ and multi-

ply by g=tanh�	s� /	s, we obtain

gf̂ = gAp̂ . �B3�

Rescaling p̂ as

p̂T = �2p̂1�

g
,
4p̂2�

g
,
4p̂3�

g
,
2p̂4�

g
,
4p̂5�

g
,0


transforms the matrix equation �B3� to gf̂=A�p̂. Because of
our rescaling of p̂, the matrix A� is now identical to the
flux-concentration matrix defined in Eq. �4� if z is replaced
by sech�	s�. Comparing the variables in both problems
shows how first passage time and probability generating
functions for discrete walkers are related to their continuum
counterparts.

More generally, for the quantities considered in this paper,
the above example establishes the following transformations;

pij�s� =
1

	i
� tanh�	s�

	s
p̂ij�z��

z=sech�	s�
,

and f ij�s�= f̂ i j�sech�	s��. Recall f̂ is the probability generat-

ing function of the first passage time. In order to relate f̂ to
the moment generating function f*, we make the further sub-

stitution f*���= f̂�e��. Thus the quantities in the main text are
given by

f
kj
* ��� = f̂ kj�e�� = fkj�arcsech�e��2�

which is the transformation used throughout the paper.
We have not seen these transformations before, but they

are analogous to the Montroll-Weiss transformations �Ref.
�9�, p. 254, Eq. �5.51��. which relate the properties of a con-
tinuous time discrete space random walker to those of a dis-
crete time discrete space random walker.
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