78 research outputs found

    Microevolution of tick-borne encephalitis virus in course of host alternation

    Get PDF
    AbstractTwo tick-borne encephalitis (TBE) virus variants were studied: mouse brain-adapted strain EK-328 and its derivate adapted to Hyalomma marginatum ticks. The tick-adapted virus exhibited small-plaque phenotype and slower replication in PEK cells, higher yield in ticks, decreased neuroinvasiveness in mice, increased binding to heparin-sepharose. A total of 15 nucleotide substitutions distinguished genomes of these variants, six substitutions resulted in protein sequence alterations, and two were in 5′NTR. Two amino acid substitutions in E protein were responsible for the observed phenotypic differences. Data obtained during reverse passaging of the tick-adapted virus in vivo and in vitro suggest that TBE virus exists as a heterogeneous population that contains virus variants most adapted to reproduction in either ticks or mammals. Host switch results in a change in the ratio of these variants in the population. Plaque purification of the tick-adapted virus resulted in the prompt emergence of new mutants with different virulence for mammals

    Evolutionary origins of hepatitis A virus in small mammals

    Get PDF
    The origins of human hepatitis A virus (HAV) are unknown. We conducted a targeted search for HAV-related viruses in small mammals sampled globally and discovered highly diversified viruses in bats, rodents, hedgehogs, and shrews. We demonstrate that these viruses share unique biological features with HAV, including structural, genomic, antigenic, and pathogenic properties. We found evidence of major shifts of HAV-related viruses between mammalian hosts in the past, suggesting both an origin of this viral genus in small mammals and a zoonotic origin of human HAV. Our data show that risk assessments for emerging viruses can benefit greatly from the analysis of viral infection patterns that evolved within animal reservoirs

    Evolutionary origins of hepatitis A virus in small mammals

    Get PDF
    Hepatitis A virus (HAV) is an ancient and ubiquitous human pathogen recovered previously only from primates. The sole species of the genus Hepatovirus, existing in both enveloped and nonenveloped forms, and with a capsid structure intermediate between that of insect viruses and mammalian picornaviruses, HAV is enigmatic in its origins. We conducted a targeted search for hepatoviruses in 15,987 specimens collected from 209 small mammal species globally and discovered highly diversified viruses in bats, rodents, hedgehogs, and shrews, which by pairwise sequence distance comprise 13 novel Hepatovirus species. Near-complete genomes from nine of these species show conservation of unique hepatovirus features, including predicted internal ribosome entry site structure, a truncated VP4 capsid protein lacking N-terminal myristoylation, a carboxyl-terminal pX extension of VP1, VP2 late domains involved in membrane envelopment, and a cis-acting replication element within the 3Dpol sequence. Antibodies in some bat sera immunoprecipitated and neutralized human HAV, suggesting conservation of critical antigenic determinants. Limited phylogenetic cosegregation among hepatoviruses and their hosts and recombination patterns are indicative of major hepatovirus host shifts in the past. Ancestral state reconstructions suggest a Hepatovirus origin in small insectivorous mammals and a rodent origin of human HAV. Patterns of infection in small mammals mimicked those of human HAV in hepatotropism, fecal shedding, acute nature, and extinction of the virus in a closed host population. The evolutionary conservation of hepatovirus structure and pathogenesis provide novel insight into the origins of HAV and highlight the utility of analyzing animal reservoirs for risk assessment of emerging viruses

    Causes and implications of codon usage bias in RNA viruses.

    Get PDF
    Choice of synonymous codons depends on nucleotide/dinucleotide composition of the genome (termed mutational pressure) and relative abundance of tRNAs in a cell (translational pressure). Mutational pressure is commonly simplified to genomic GC content; however mononucleotide and dinucleotide frequencies in different genomes or mRNAs may vary significantly, especially in RNA viruses. A series of in silico shuffling algorithms were developed to account for these features and analyze the relative impact of mutational pressure components on codon usage bias in RNA viruses. Total GC content was a poor descriptor of viral genome composition and causes of codon usage bias. Genomic nucleotide content was the single most important factor of synonymous codon usage. Moreover, the choice between compatible amino acids (e.g., leucine and isoleucine) was strongly affected by genomic nucleotide composition. Dinucleotide composition at codon positions 2-3 had additional effect on codon usage. Together with mononucleotide composition bias, it could explain almost the entire codon usage bias in RNA viruses. On the other hand, strong dinucleotide content bias at codon position 3-1 found in some viruses had very little effect on codon usage. A hypothetical innate immunity sensor for CpG in RNA could partially explain the codon usage bias, but due to dependence of virus translation upon biased host translation machinery, experimental studies are required to further explore the source of dinucleotide bias in RNA viruses

    Plots of ENC vs. sequence content in 29 RNA viruses indicated in Table 1 (black dots) and in 1000 simulated sequences with random third-position nucleotide content (gray circles).

    No full text
    <p>Plot of ENC against GC content (A), variance of third-position GC content (B), variance of third-position nucleotide frequencies (D) and variance of dinucleotide frequencies at codon position 2-3 (D). Solid line in panel (a) indicates theoretical prediction of ENC as a function of GC content bias <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0056642#pone.0056642-Wright1" target="_blank">[31]</a>.</p

    Patterns and Temporal Dynamics of Natural Recombination in Noroviruses

    No full text
    Noroviruses infect a wide range of mammals and are the major cause of gastroenteritis in humans. Recombination at the junction of ORF1 encoding nonstructural proteins and ORF2 encoding major capsid protein VP1 is a well-known feature of noroviruses. Using all available complete norovirus sequences, we systematically analyzed patterns of natural recombination in the genus Norovirus both throughout the genome and across the genogroups. Recombination events between nonstructural (ORF1) and structural genomic regions (ORF2 and ORF3) were found in all analyzed genogroups of noroviruses, although recombination was most prominent between members of GII, the most common genogroup that infects humans. The half-life times of recombinant forms (clades without evidence of recombination) of human GI and GII noroviruses were 10.4 and 8.4–11.3 years, respectively. There was evidence of many recent recombination events, and most noroviruses that differed by more than 18% of nucleotide sequence were recombinant relative to each other. However, there were no distinct recombination events between viruses that differed by over 42% in ORF2/3, consistent with the absence of systematic recombination between different genogroups. The few inter-genogroup recombination events most likely occurred between ancient viruses before they diverged into contemporary genogroups. The recombination events within ORF1 or between ORF2/3 were generally rare. Thus, noroviruses routinely exchange full structural and nonstructural blocks of the genome, providing a modular evolution

    CpG content at different codon positions in RNA viruses.

    No full text
    <p>(A) Relative CpG dinucleotide content at codon positions 2-3 and 3-1 in RNA viruses (<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0056642#pone-0056642-t001" target="_blank">Table 1</a>) was calculated as a ratio of the observed CpG content to the expected, calculated as the product of genomic nucleotide frequencies at the corresponding codon positions, e.g. £ [C<sub>2</sub>]×£ [G<sub>3</sub>] for CpG<sub>23</sub> dinucleotide. (B) Mean relative CpG dinucleotide content in extended datasets of five RNA viruses. White, codon positions 2-3; gray, codon positions 3-1. Error bars indicate standard errors of the mean. Virus name acronyms are provided in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0056642#pone-0056642-t001" target="_blank">Table 1</a>.</p
    corecore