1,902 research outputs found

    Determination of gas temperature in the plasmatron channel according to the known distribution of electronic temperature

    Get PDF
    An analytical method to calculate the temperature distribution of heavy particles in the channel of the plasma torch on the known distribution of the electronic temperature has been proposed. The results can be useful for a number of model calculations in determining the most effective conditions of gas blowing through the plasma torch with the purpose of heating the heavy component. This approach allows us to understand full details about the heating of cold gas, inpouring the plasma, and to estimate correctly the distribution of the gas temperature inside the channel

    Mistletoe lectin dissociates into catalytic and binding subunits before translocation across the membrane to the cytoplasm

    Get PDF
    AbstractHybridomas producing monoclonal antibodies (mAbs) against the mistletoe lectin A-chain (MLA) were obtained to investigate the intracellular routing and translocation of ribosome-inactivating proteins. Anti-MLA mAb MNA5 did not bind the holotoxin but interacted with isolated MLA. This epitope was not recognized upon MLA denaturation or conjugation of MLA with the ricin binding subunit (RTB). Furthermore, the mAbs did not appreciably react with a panel of MLA synthetic octapeptides linked to the surface of polyethylene pins. A study of the cytotoxicity of mistletoe lectin, ricin, and chimeric toxin MLA/RTB for the hybridomas revealed that interchain disulfide bond reduction and subunit dissociation are required for cytotoxic activity of mistletoe lectin

    Modeling of GERDA Phase II data

    Get PDF
    The GERmanium Detector Array (GERDA) experiment at the Gran Sasso underground laboratory (LNGS) of INFN is searching for neutrinoless double-beta (0νββ0\nu\beta\beta) decay of 76^{76}Ge. The technological challenge of GERDA is to operate in a "background-free" regime in the region of interest (ROI) after analysis cuts for the full 100\,kg\cdotyr target exposure of the experiment. A careful modeling and decomposition of the full-range energy spectrum is essential to predict the shape and composition of events in the ROI around QββQ_{\beta\beta} for the 0νββ0\nu\beta\beta search, to extract a precise measurement of the half-life of the double-beta decay mode with neutrinos (2νββ2\nu\beta\beta) and in order to identify the location of residual impurities. The latter will permit future experiments to build strategies in order to further lower the background and achieve even better sensitivities. In this article the background decomposition prior to analysis cuts is presented for GERDA Phase II. The background model fit yields a flat spectrum in the ROI with a background index (BI) of 16.040.85+0.7810316.04^{+0.78}_{-0.85} \cdot 10^{-3}\,cts/(kg\cdotkeV\cdotyr) for the enriched BEGe data set and 14.680.52+0.4710314.68^{+0.47}_{-0.52} \cdot 10^{-3}\,cts/(kg\cdotkeV\cdotyr) for the enriched coaxial data set. These values are similar to the one of Gerda Phase I despite a much larger number of detectors and hence radioactive hardware components

    Final Results of GERDA on the Two-Neutrino Double-β Decay Half-Life of 76Ge

    Get PDF
    We present the measurement of the two-neutrino double- β decay rate of 76 Ge performed with the GERDA Phase II experiment. With a subset of the entire GERDA exposure, 11.8 kg yr, the half-life of the process has been determined: T 2 ν 1 / 2 = ( 2.022 ± 0.01 8 stat ± 0.03 8 syst ) × 10 21     yr . This is the most precise determination of the 76 Ge two-neutrino double- β decay half-life and one of the most precise measurements of a double- β decay process. The relevant nuclear matrix element can be extracted: M 2 ν eff = ( 0.101 ± 0.001 )

    Search for tri-nucleon decays of ^{76}Ge in GERDA

    Get PDF
    We search for tri-nucleon decays of 76Ge in the dataset from the GERmanium Detector Array (GERDA) experiment. Decays that populate excited levels of the daughter nucleus above the threshold for particle emission lead to disintegration and are not considered. The ppp-, ppn-, and pnn-decays lead to 73Cu, 73Zn, and 73Ga nuclei, respectively. These nuclei are unstable and eventually proceed by the beta decay of 73Ga to 73Ge (stable). We search for the 73Ga decay exploiting the fact that it dominantly populates the 66.7 keV 73mGa state with half-life of 0.5 s. The nnn-decays of 76Ge that proceed via 73mGe are also included in our analysis. We find no signal candidate and place a limit on the sum of the decay widths of the inclusive tri-nucleon decays that corresponds to a lower lifetime limit of 1.2×1026 yr  (90% credible interval). This result improves previous limits for tri-nucleon decays by one to three orders of magnitude

    Search for exotic physics in double-β decays with GERDA Phase II

    Get PDF
    A search for Beyond the Standard Model double-β\beta decay modes of76^{76}Ge has been performed with data collected during the Phase II of theGERmanium Detector Array (GERDA) experiment, located at Laboratori Nazionalidel Gran Sasso of INFN (Italy). Improved limits on the decays involvingMajorons have been obtained, compared to previous experiments with 76^{76}Ge,with half-life values on the order of 1023^{23} yr. For the first time with76^{76}Ge, limits on Lorentz invariance violation effects in double-β\betadecay have been obtained. The isotropic coefficienta˚of(3)\mathring{a}_\text{of}^{(3)}, which embeds Lorentz violation indouble-β\beta decay, has been constrained at the order of 10610^{-6} GeV. Wealso set the first experimental limits on the search for light exotic fermionsin double-β\beta decay, including sterile neutrinos.<br

    Liquid argon light collection and veto modeling in GERDA Phase II

    Get PDF
    The ability to detect liquid argon scintillation light from within a densely packed high-purity germanium detector array allowed the Gerda experiment to reach an exceptionally low background rate in the search for neutrinoless double beta decay of 76 Ge. Proper modeling of the light propagation throughout the experimental setup, from any origin in the liquid argon volume to its eventual detection by the novel light read-out system, provides insight into the rejection capability and is a necessary ingredient to obtain robust background predictions. In this paper, we present a model of the Gerda liquid argon veto, as obtained by Monte Carlo simulations and constrained by calibration data, and highlight its application for background decomposition

    Final Results of GERDA on the Two-Neutrino Double-β\beta Decay Half-Life of 76^{76}Ge

    Full text link
    We present the measurement of the two-neutrino double-β\beta decay rate of 76^{76}Ge performed with the GERDA Phase II experiment. With a subset of the entire GERDA exposure, 11.8 kg\cdotyr, the half-life of the process has been determined: T1/22ν=(2.022±0.018stat±0.038sys)×1021T^{2\nu}_{1/2} = (2.022 \pm 0.018_{stat} \pm 0.038_{sys})\times10^{21} yr. This is the most precise determination of the 76^{76}Ge two-neutrino double-β\beta decay half-life and one of the most precise measurements of a double-β\beta decay process. The relevant nuclear matrix element can be extracted: Meff2ν=(0.101±0.001).M^{2\nu}_{\text{eff}} = (0.101\pm0.001).Comment: 7 pages, 4 figures, 2 table
    corecore