36 research outputs found

    Accuracy of Guided Surgery and Real-Time Navigation in Temporomandibular Joint Replacement Surgery

    Get PDF
    Background: Sophisticated guided surgery has not been implemented into total joint replacement-surgery (TJR) of the temporomandibular joint (TMJ) so far. Design and in-house manufacturing of a new advanced drilling guide with vector and length control for a typical TJR fossa component are described in this in vitro study, and its accuracy/utilization was evaluated and compared with those of intraoperative real-time navigation and already available standard drilling guides. Methods: Skull base segmentations of five CT-datasets from different patients were used to design drilling guides with vector and length control according to virtual surgical planning (VSP) for the TJR of the TMJ. Stereolithographic models of the skull bases were printed three times for each case. Three groups were formed to compare our newly designed advanced drilling guide with a standard drilling guide and drill-tracking by real-time navigation. The deviation of screw head position, screw length and vector in the lateral skull base have been evaluated (n = 72). Results: There was no difference in the screw head position between all three groups. The deviation of vector and length was significantly lower with the use of the advanced drilling guide compared with standard guide and navigation. However, no benefit in terms of accuracy on the lateral skull base by the use of real-time navigation could be observed. Conclusion: Since guided surgery is standard in implant dentistry and other CMF reconstructions, this new approach can be introduced into clinical practice soon, in order to increase accuracy and patient safety

    Continuous Multidisciplinary Care for Patients With Orofacial Clefts—Should the Follow-up Interval Depend on the Cleft Entity?

    Get PDF
    Objective: The multidisciplinary follow-up of patients with cleft lip with or without palate (CL/P) is organized differently in specialized centers worldwide. The aim of this study was to evaluate the different treatment needs of patients with different manifestations of CL/P and to potentially adapt the frequency and timing of checkup examinations accordingly. Design:We retrospectively analyzed the data of all patients attending the CL/P consultation hour at a tertiary care center between June 2005 and August 2020 (n=1126). We defined 3 groups of cleft entities: (1) isolated clefts of lip or lip and alveolus (CL/A), (2) isolated clefts of the hard and/or soft palate, and (3) complete clefts of lip, alveolus and palate (CLP). Timing and type of therapy recommendations given by the specialists of different disciplines were analyzed for statistical differences. Results: Patients with CLP made up the largest group (n=537), followed by patients with cleft of the soft palate (n=371) and CL ±A (n=218). There were significant differences between the groups with regard to type and frequency of treatment recommendations. A therapy was recommended in a high proportion of examinations in all groups at all ages. Conclusion: Although there are differences between cleft entities, the treatment need of patients with orofacial clefts is generally high during the growth period. Patients with CL/A showed a similarly high treatment demand and should be monitored closely. A close follow-up for patients with diagnosis of CL/P is crucial and measures should be taken to increase participation in followup appointments

    Clinical Follow-Up in Orofacial Clefts—Why Multidisciplinary Care Is the Key

    Get PDF
    (1) Background: Although most clinicians involved in the treatment of cleft patients agree upon the major importance of interdisciplinary cooperation and many protocols and concepts have been discussed in the literature, there is little evidence of the relevance of continuous interdisciplinary care. We aimed to objectify the type and number of therapeutic decisions resulting from an annual multidisciplinary follow-up. (2) Methods: We retrospectively analyzed the data of all 1126 patients followed up in the weekly consultation hours for cleft patients at university clinics in Leipzig for the years 2005–2020. We assessed the clinical data of every patient and specifically evaluated the treatment decisions taken at different points in time by the participating experts of different specialties. (3) Results: In total, 3470 consultations were included in the evaluation, and in 70% of those, a therapeutic recommendation was given. Each specialty showed certain time frames with intense treatment demand, which partially overlapped. Nearly all therapy recommendations were statistically attached to a certain age (p < 0.001). (4) Conclusions: There is an exceptionally high need for the interdisciplinary assessment of patients with cleft formation. Some developmental phases are of particular importance with regard to regular follow-up and initiation of different treatment protocols. The therapy and checkup of cleft patients should be concentrated in specialized centers

    A novel pilot animal model for bone augmentation using osseous shell technique for preclinical in vivo studies

    No full text
    Abstract Objectives Bone grafting is commonly used to reconstruct skeletal defects in the craniofacial region. Several bone augmentation models have been developed to evaluate bone formation using novel bone substitute materials. The aim of this study was to evaluate a surgical animal model for establishing a three‐dimensional (3D) grafting environment in the animal's mandibular ramus for bone augmentation using the osseous shell technique, as in humans. Materials and Methods Osteological survey of New Zealand white (NZW) rabbit skull (Oryctolagus cuniculus): Initial osteological and imaging surveys were performed on a postmortem skull for a feasibility assessment of the surgical procedure. Postmortem pilot surgery and cone beam computed tomography imaging: a 3D osseous defect was created in the mandibular ramus through a submandibular incision. The osseous shell plates were stabilized with osteosynthesis fixation screws, and defects were filled with particular bone grafting material. In vivo surgical procedure: surgeries were conducted in four 8‐week‐old NZW rabbits utilizing two osseous shell materials: xenogeneic human cortical plates and autogenous rabbit cortical plates. The created 3D defects were filled using xenograft and allograft bone grafting materials. The healed defects were evaluated for bone formation after 12 weeks using histological and cone beam computed tomography imaging analysis. Results Clinical analysis 12 weeks after surgery revealed the stability of the 3D grafted bone augmentation defects using the osseous shell technique. Imaging and histological analyses confirmed the effectiveness of this model in assessing bone formation. Conclusions The proposed animal model is a promising model with the potential to study various bone grafting materials for augmentation in the mandibular ramus using the osseous shell technique without compromising the health of the animal. The filled defects could be analyzed for osteogenesis, quantification of bone formation, and healing potential using histomorphometric analysis, in addition to 3D morphologic evaluation using radiation imaging

    Accuracy of Guided Surgery and Real-Time Navigation in Temporomandibular Joint Replacement Surgery

    No full text
    Background: Sophisticated guided surgery has not been implemented into total joint replacement-surgery (TJR) of the temporomandibular joint (TMJ) so far. Design and in-house manufacturing of a new advanced drilling guide with vector and length control for a typical TJR fossa component are described in this in vitro study, and its accuracy/utilization was evaluated and compared with those of intraoperative real-time navigation and already available standard drilling guides. Methods: Skull base segmentations of five CT-datasets from different patients were used to design drilling guides with vector and length control according to virtual surgical planning (VSP) for the TJR of the TMJ. Stereolithographic models of the skull bases were printed three times for each case. Three groups were formed to compare our newly designed advanced drilling guide with a standard drilling guide and drill-tracking by real-time navigation. The deviation of screw head position, screw length and vector in the lateral skull base have been evaluated (n = 72). Results: There was no difference in the screw head position between all three groups. The deviation of vector and length was significantly lower with the use of the advanced drilling guide compared with standard guide and navigation. However, no benefit in terms of accuracy on the lateral skull base by the use of real-time navigation could be observed. Conclusion: Since guided surgery is standard in implant dentistry and other CMF reconstructions, this new approach can be introduced into clinical practice soon, in order to increase accuracy and patient safety

    Accuracy of Guided Surgery and Real-Time Navigation in Temporomandibular Joint Replacement Surgery

    No full text
    Background: Sophisticated guided surgery has not been implemented into total joint replacement-surgery (TJR) of the temporomandibular joint (TMJ) so far. Design and in-house manufacturing of a new advanced drilling guide with vector and length control for a typical TJR fossa component are described in this in vitro study, and its accuracy/utilization was evaluated and compared with those of intraoperative real-time navigation and already available standard drilling guides. Methods: Skull base segmentations of five CT-datasets from different patients were used to design drilling guides with vector and length control according to virtual surgical planning (VSP) for the TJR of the TMJ. Stereolithographic models of the skull bases were printed three times for each case. Three groups were formed to compare our newly designed advanced drilling guide with a standard drilling guide and drill-tracking by real-time navigation. The deviation of screw head position, screw length and vector in the lateral skull base have been evaluated (n = 72). Results: There was no difference in the screw head position between all three groups. The deviation of vector and length was significantly lower with the use of the advanced drilling guide compared with standard guide and navigation. However, no benefit in terms of accuracy on the lateral skull base by the use of real-time navigation could be observed. Conclusion: Since guided surgery is standard in implant dentistry and other CMF reconstructions, this new approach can be introduced into clinical practice soon, in order to increase accuracy and patient safety

    Accuracy of Guided Surgery and Real-Time Navigation in Temporomandibular Joint Replacement Surgery

    No full text
    Background: Sophisticated guided surgery has not been implemented into total joint replacement-surgery (TJR) of the temporomandibular joint (TMJ) so far. Design and in-house manufacturing of a new advanced drilling guide with vector and length control for a typical TJR fossa component are described in this in vitro study, and its accuracy/utilization was evaluated and compared with those of intraoperative real-time navigation and already available standard drilling guides. Methods: Skull base segmentations of five CT-datasets from different patients were used to design drilling guides with vector and length control according to virtual surgical planning (VSP) for the TJR of the TMJ. Stereolithographic models of the skull bases were printed three times for each case. Three groups were formed to compare our newly designed advanced drilling guide with a standard drilling guide and drill-tracking by real-time navigation. The deviation of screw head position, screw length and vector in the lateral skull base have been evaluated (n = 72). Results: There was no difference in the screw head position between all three groups. The deviation of vector and length was significantly lower with the use of the advanced drilling guide compared with standard guide and navigation. However, no benefit in terms of accuracy on the lateral skull base by the use of real-time navigation could be observed. Conclusion: Since guided surgery is standard in implant dentistry and other CMF reconstructions, this new approach can be introduced into clinical practice soon, in order to increase accuracy and patient safety
    corecore