172 research outputs found
Analytical and Clinical Performance of Amyloid-Beta Peptides Measurements in CSF of ADNIGO/2 Participants by an LC–MS/MS Reference Method
BACKGROUND: Cerebrospinal fluid (CSF) amyloid-β1-42 (Aβ42) reliably detects brain amyloidosis based on its high concordance with plaque burden at autopsy and with amyloid positron emission tomography (PET) ligand retention observed in several studies. Low CSF Aβ42 concentrations in normal aging and dementia are associated with the presence of fibrillary Aβ across brain regions detected by amyloid PET imaging. METHODS: An LC-MS/MS reference method for Aβ42, modified by adding Aβ40 and Aβ38 peptides to calibrators, was used to analyze 1445 CSF samples from ADNIGO/2 participants. Seventy runs were completed using 2 different lots of calibrators. For preparation of Aβ42 calibrators and controls spiking solution, reference Aβ42 standard with certified concentration was obtained from EC-JRC-IRMM (Belgium). Aβ40 and Aβ38 standards were purchased from rPeptide. Aβ42 calibrators' accuracy was established using CSF-based Aβ42 Certified Reference Materials (CRM). RESULTS: CRM-adjusted Aβ42 calibrator concentrations were calculated using the regression equation Y (CRM-adjusted) = 0.89X (calibrators) + 32.6. Control samples and CSF pools yielded imprecision ranging from 6.5 to 10.2% (Aβ42) and 2.2 to 7.0% (Aβ40). None of the CSF pools showed statistically significant differences in Aβ42 concentrations across 2 different calibrator lots. Comparison of Aβ42 with Aβ42/Aβ40 showed that the ratio improved concordance with concurrent [18F]-florbetapir PET as a measure of fibrillar Aβ (n = 766) from 81 to 88%. CONCLUSIONS: Long-term performance assessment substantiates our modified LC-MS/MS reference method for 3 Aβ peptides. The improved diagnostic performance of the CSF ratio Aβ42/Aβ40 suggests that Aβ42 and Aβ40 should be measured together and supports the need for an Aβ40 CRM
Designing topographically textured microparticles for induction and modulation of osteogenesis in mesenchymal stem cell engineering
Mesenchymal stem cells are the focus of intense research in bone development and regeneration. The potential of microparticles as modulating moieties of osteogenic response by utilizing their architectural features is demonstrated herein. Topographically textured microparticles of varying microscale features are produced by exploiting phase-separation of a readily soluble sacrificial component from polylactic acid. The influence of varying topographical features on primary human mesenchymal stem cell attachment, proliferation and markers of osteogenesis is investigated. In the absence of osteoinductive supplements, cells cultured on textured microparticles exhibit notably increased expression of osteogenic markers relative to conventional smooth microparticles. They also exhibit varying morphological, attachment and proliferation responses. Significantly altered gene expression and metabolic profiles are observed, with varying histological characteristics in vivo. This study highlights how tailoring topographical design offers cell-instructive 3D microenvironments which allow manipulation of stem cell fate by eliciting the desired downstream response without use of exogenous osteoinductive factors
The Effect of Pre-Injury Anti-Platelet Therapy on the Development of Complications in Isolated Blunt Chest Wall Trauma: A Retrospective Study
INTRODUCTION: The difficulties in the management of the blunt chest wall trauma patient in the Emergency Department due to the development of late complications are well recognised in the literature. Pre-injury anti-platelet therapy has been previously investigated as a risk factor for poor outcomes following traumatic head injury, but not in the blunt chest wall trauma patient cohort. The aim of this study was to investigate pre-injury anti-platelet therapy as a risk factor for the development of complications in the recovery phase following blunt chest wall trauma. METHODS: A retrospective study was completed in which the medical notes were analysed of all blunt chest wall trauma patients presenting to a large trauma centre in Wales in 2012 and 2013. Using univariate and multivariable logistic regression analysis, pre-injury platelet therapy was investigated as a risk factor for the development of complications following blunt chest wall trauma. Previously identified risk factors were included in the analysis to address the influence of confounding. RESULTS: A total of 1303 isolated blunt chest wall trauma patients presented to the ED in Morriston Hospital in 2012 and 2013 with complications recorded in 144 patients (11%). On multi-variable analysis, pre-injury anti-platelet therapy was found to be a significant risk factor for the development of complications following isolated blunt chest wall trauma (odds ratio: 16.9; 95% confidence intervals: 8.2-35.2). As in previous studies patient age, number of rib fractures, chronic lung disease and pre-injury anti-coagulant use were also found to be significant risk factors. CONCLUSIONS: Pre-injury anti-platelet therapy is being increasingly used as a first line treatment for a number of conditions and there is a concurrent increase in trauma in the elderly population. Pre-injury anti-platelet therapy should be considered as a risk factor for the development of complications by clinicians managing blunt chest wall trauma
To add or not to add a new treatment arm to a multiarm study: A decision-theoretic framework.
Multiarm clinical trials, which compare several experimental treatments against control, are frequently recommended due to their efficiency gain. In practise, all potential treatments may not be ready to be tested in a phase II/III trial at the same time. It has become appealing to allow new treatment arms to be added into on-going clinical trials using a "platform" trial approach. To the best of our knowledge, many aspects of when to add arms to an existing trial have not been explored in the literature. Most works on adding arm(s) assume that a new arm is opened whenever a new treatment becomes available. This strategy may prolong the overall duration of a study or cause reduction in marginal power for each hypothesis if the adaptation is not well accommodated. Within a two-stage trial setting, we propose a decision-theoretic framework to investigate when to add or not to add a new treatment arm based on the observed stage one treatment responses. To account for different prospect of multiarm studies, we define utility in two different ways; one for a trial that aims to maximise the number of rejected hypotheses; the other for a trial that would declare a success when at least one hypothesis is rejected from the study. Our framework shows that it is not always optimal to add a new treatment arm to an existing trial. We illustrate a case study by considering a completed trial on knee osteoarthritis
Stress Generation and Filament Turnover during Actin Ring Constriction
We present a physical analysis of the dynamics and mechanics of contractile actin rings. In particular, we analyze the dynamics of ring contraction during cytokinesis in the Caenorhabditis elegans embryo. We present a general analysis of force balances and material exchange and estimate the relevant parameter values. We show that on a microscopic level contractile stresses can result from both the action of motor proteins, which cross-link filaments, and from the polymerization and depolymerization of filaments in the presence of end-tracking cross-linkers
Bacteria clustering by polymers induces the expression of quorum sense controlled phenotypes
Bacteria deploy a range of chemistries to regulate their behaviour and respond to their environment. Quorum sensing is one mean by which bacteria use chemical reactions to modulate pre-infection behaviour such as surface attachment. Polymers that can interfere with bacterial adhesion or the chemical reactions used for quorum sensing are thus a potential means to control bacterial population responses. Here we report how polymeric "bacteria sequestrants", designed to bind to bacteria through electrostatic interactions and thus inhibit bacterial adhesion to surfaces, induce the expression of quorum sensing controlled phenotypes as a consequence of cell clustering. A combination of polymer and analytical chemistry, biological assays and computational modelling has been used to characterise the feedback between bacteria clustering and quorum sensing signaling. We have also derived design principles and chemical strategies for controlling bacterial behaviour at the population leve
Skeletal Adaptation to Intramedullary Pressure-Induced Interstitial Fluid Flow Is Enhanced in Mice Subjected to Targeted Osteocyte Ablation
Interstitial fluid flow (IFF) is a potent regulatory signal in bone. During mechanical loading, IFF is generated through two distinct mechanisms that result in spatially distinct flow profiles: poroelastic interactions within the lacunar-canalicular system, and intramedullary pressurization. While the former generates IFF primarily within the lacunar-canalicular network, the latter generates significant flow at the endosteal surface as well as within the tissue. This gives rise to the intriguing possibility that loading-induced IFF may differentially activate osteocytes or surface-residing cells depending on the generating mechanism, and that sensation of IFF generated via intramedullary pressurization may be mediated by a non-osteocytic bone cell population. To begin to explore this possibility, we used the Dmp1-HBEGF inducible osteocyte ablation mouse model and a microfluidic system for modulating intramedullary pressure (ImP) to assess whether structural adaptation to ImP-driven IFF is altered by partial osteocyte depletion. Canalicular convective velocities during pressurization were estimated through the use of fluorescence recovery after photobleaching and computational modeling. Following osteocyte ablation, transgenic mice exhibited severe losses in bone structure and altered responses to hindlimb suspension in a compartment-specific manner. In pressure-loaded limbs, transgenic mice displayed similar or significantly enhanced structural adaptation to Imp-driven IFF, particularly in the trabecular compartment, despite up to ∼50% of trabecular lacunae being uninhabited following ablation. Interestingly, regression analysis revealed relative gains in bone structure in pressure-loaded limbs were correlated with reductions in bone structure in unpressurized control limbs, suggesting that adaptation to ImP-driven IFF was potentiated by increases in osteoclastic activity and/or reductions in osteoblastic activity incurred independently of pressure loading. Collectively, these studies indicate that structural adaptation to ImP-driven IFF can proceed unimpeded following a significant depletion in osteocytes, consistent with the potential existence of a non-osteocytic bone cell population that senses ImP-driven IFF independently and potentially parallel to osteocytic sensation of poroelasticity-derived IFF
An SK3 Channel/nWASP/Abi-1 Complex Is Involved in Early Neurogenesis
BACKGROUND: The stabilization or regulated reorganization of the actin cytoskeleton is essential for cellular structure and function. Recently, we could show that the activation of the SK3-channel that represents the predominant SK-channel in neural stem cells, leads to a rapid local outgrowth of long filopodial processes. This observation indicates that the rearrangement of the actin based cytoskeleton via membrane bound SK3-channels might selectively be controlled in defined micro compartments of the cell. PRINCIPAL FINDINGS: We found two important proteins for cytoskeletal rearrangement, the Abelson interacting protein 1, Abi-1 and the neural Wiskott Aldrich Syndrome Protein, nWASP, to be in complex with SK3- channels in neural stem cells (NSCs). Moreover, this interaction is also found in spines and postsynaptic compartments of developing primary hippocampal neurons and regulates neurite outgrowth during early phases of differentiation. Overexpression of the proteins or pharmacological activation of SK3 channels induces obvious structural changes in NSCs and hippocampal neurons. In both neuronal cell systems SK3 channels and nWASP act synergistic by strongly inducing filopodial outgrowth while Abi-1 behaves antagonistic to its interaction partners. CONCLUSIONS: Our results give good evidence for a functional interplay of a trimeric complex that transforms incoming signals via SK3-channel activation into the local rearrangement of the cytoskeleton in early steps of neuronal differentiation involving nWASP and Abi-1 actin binding proteins
Calcium-Activated Potassium Channels BK and IK1 Are Functionally Expressed in Human Gliomas but Do Not Regulate Cell Proliferation
Gliomas are morbid brain tumors that are extremely resistant to available chemotherapy and radiology treatments. Some studies have suggested that calcium-activated potassium channels contribute to the high proliferative potential of tumor cells, including gliomas. However, other publications demonstrated no role for these channels or even assigned them antitumorogenic properties. In this work we characterized the expression and functional contribution to proliferation of Ca2+-activated K+ channels in human glioblastoma cells. Quantitative RT-PCR detected transcripts for the big conductance (BK), intermediate conductance (IK1), and small conductance (SK2) K+ channels in two glioblastoma-derived cell lines and a surgical sample of glioblastoma multiforme. Functional expression of BK and IK1 in U251 and U87 glioma cell lines and primary glioma cultures was verified using whole-cell electrophysiological recordings. Inhibitors of BK (paxilline and penitrem A) and IK1 channels (clotrimazole and TRAM-34) reduced U251 and U87 proliferation in an additive fashion, while the selective blocker of SK channels UCL1848 had no effect. However, the antiproliferative properties of BK and IK1 inhibitors were seen at concentrations that were higher than those necessary to inhibit channel activity. To verify specificity of pharmacological agents, we downregulated BK and IK1 channels in U251 cells using gene-specific siRNAs. Although siRNA knockdowns caused strong reductions in the BK and IK1 current densities, neither single nor double gene silencing significantly affected rates of proliferation. Taken together, these results suggest that Ca2+-activated K+ channels do not play a critical role in proliferation of glioma cells and that the effects of pharmacological inhibitors occur through their off-target actions
Eef1a2 Promotes Cell Growth, Inhibits Apoptosis and Activates JAK/STAT and AKT Signaling in Mouse Plasmacytomas
The canonical function of EEF1A2, normally expressed only in muscle, brain, and heart, is in translational elongation, but recent studies suggest a non-canonical function as a proto-oncogene that is overexpressed in a variety of solid tumors including breast and ovary. Transcriptional profiling of a spectrum of primary mouse B cell lineage neoplasms showed that transcripts encoding EEF1A2 were uniquely overexpressed in plasmacytomas (PCT), tumors of mature plasma cells. Cases of human multiple myeloma expressed significantly higher levels of EEF1A2 transcripts than normal bone marrow plasma cells. High-level expression was also a feature of a subset of cell lines developed from mouse PCT and from the human MM.Heightened expression of EEF1A2 was not associated with increased copy number or coding sequence mutations. shRNA-mediated knockdown of Eef1a2 transcripts and protein was associated with growth inhibition due to delayed G1-S progression, and effects on apoptosis that were seen only under serum-starved conditions. Transcriptional profiles and western blot analyses of knockdown cells revealed impaired JAK/STAT and PI3K/AKT signaling suggesting their contributions to EEF1A2-mediated effects on PCT induction or progression.EEF1A2 may play contribute to the induction or progression of some PCT and a small percentage of MM. Eef1a2 could also prove to be a useful new marker for a subset of MM and, ultimately, a possible target for therapy
- …