207 research outputs found

    Autostrata: Improved Automatic Stratification for Coarsened Exact Matching

    Get PDF
    We commonly adjust for confounding factors in analytical observational epidemiologyto reduce biases that distort the results. Stratification and matching are standard methods for reducing confounder bias. Coarsened exact matching (CEM) is a recent method using stratification to coarsen variables into categorical variables to enable exact matching of exposed and nonexposed subjects. CEM’s standard approach to stratifying variables is histogram binning. However, histogram binning creates strata of uniformwidths and does not distinguish between exposed and nonexposed. We present Autostrata, a novel algorithmic approach to stratification producing improved results in CEM and providing more control to the researcher

    Aux-Drop: Handling Haphazard Inputs in Online Learning Using Auxiliary Dropouts

    Full text link
    Many real-world applications based on online learning produce streaming data that is haphazard in nature, i.e., contains missing features, features becoming obsolete in time, the appearance of new features at later points in time and a lack of clarity on the total number of input features. These challenges make it hard to build a learnable system for such applications, and almost no work exists in deep learning that addresses this issue. In this paper, we present Aux-Drop, an auxiliary dropout regularization strategy for online learning that handles the haphazard input features in an effective manner. Aux-Drop adapts the conventional dropout regularization scheme for the haphazard input feature space ensuring that the final output is minimally impacted by the chaotic appearance of such features. It helps to prevent the co-adaptation of especially the auxiliary and base features, as well as reduces the strong dependence of the output on any of the auxiliary inputs of the model. This helps in better learning for scenarios where certain features disappear in time or when new features are to be modelled. The efficacy of Aux-Drop has been demonstrated through extensive numerical experiments on SOTA benchmarking datasets that include Italy Power Demand, HIGGS, SUSY and multiple UCI datasets. The code is available at https://github.com/Rohit102497/Aux-Drop.Comment: Accepted at Transactions on Machine Learning Research (TMLR). Link: https://openreview.net/pdf?id=R9CgBkeZ6

    Auxiliary Network: Scalable and agile online learning for dynamic system with inconsistently available inputs

    Get PDF
    Streaming classification methods assume the number of input features is fixed and always received. But in many real-world scenarios, some features are reliable while others are unreliable or inconsistent. We propose a novel online deep learning-based model called Auxiliary Network (Aux-Net), which is scalable and agile and can handle any number of inputs at each time instance. The Aux-Net model is based on the hedging algorithm and online gradient descent. It employs a model of varying depth in an online setting using single pass learning. Aux-Net is a foundational work towards scalable neural network for a dynamic complex environment dealing ad hoc or inconsistent inputs. The efficacy of Aux-Net is shown on the Italy Power Demand dataset

    A novel algorithm to detect non-wear time from raw accelerometer data using deep convolutional neural networks

    Get PDF
    To date, non-wear detection algorithms commonly employ a 30, 60, or even 90 mins interval or window in which acceleration values need to be below a threshold value. A major drawback of such intervals is that they need to be long enough to prevent false positives (type I errors), while short enough to prevent false negatives (type II errors), which limits detecting both short and longer episodes of non-wear time. In this paper, we propose a novel non-wear detection algorithm that eliminates the need for an interval. Rather than inspecting acceleration within intervals, we explore acceleration right before and right after an episode of non-wear time. We trained a deep convolutional neural network that was able to infer non-wear time by detecting when the accelerometer was removed and when it was placed back on again. We evaluate our algorithm against several baseline and existing non-wear algorithms, and our algorithm achieves a perfect precision, a recall of 0.9962, and an F1 score of 0.9981, outperforming all evaluated algorithms. Although our algorithm was developed using patterns learned from a hip-worn accelerometer, we propose algorithmic steps that can easily be applied to a wrist-worn accelerometer and a retrained classification model

    Counterfactual Explainable Gastrointestinal and Colonoscopy Image Segmentation

    Get PDF
    Segmenting medical images accurately and reliably is crucial for disease diagnosis and treatment. Due to the wide assortment of objects’ sizes, shapes, and scanning modalities, it has become more challenging. Many convolutional neural networks (CNN) have recently been designed for segmentation tasks and achieved great success. This paper presents an optimized deep learning solution using DeepLabv3+ with ResNet-101 as its backbone. The proposed approach allows capturing variabilities of diverse objects. It provides improved and reliable quantitative and qualitative results in comparison to other state-of-the-art (SOTA) methods on two publicly available gastrointestinal and colonoscopy datasets. Few studies show the inadequacy of stable performance in varying object segmentation tasks, notwithstanding the sizes of objects. Our method has stable performance in the segmentation of large and small medical objects. The explainability of our robust model with benchmarking on SOTA approaches for both datasets will be fruitful for further research on biomedical image segmentation

    Uni- and triaxial accelerometric signals agree during daily routine, but show differences between sports

    Get PDF
    Source at https://doi.org/10.1038/s41598-018-33288-z.Accelerometers objectively monitor physical activity, and ongoing research suggests they can also detect patterns of body movement. However, different types of signal (uniaxial, captured by older studies, vs. the newer triaxial) and or/device (validated Actigraph used by older studies, vs. others) may lead to incomparability of results from different time periods. Standardization is desirable. We establish whether uniaxial signals adequately monitor routine activity, and whether triaxial accelerometry can detect sport-specific variations in movement pattern. 1402 adolescents wore triaxial Actigraphs (GT3X) for one week and diaried sport. Uni- and triaxial counts per minute were compared across the week and between over 30 different sports. Across the whole recording period 95% of variance in triaxial counts was explained by the vertical axis (5th percentile for R2, 91%). Sport made up a small fraction of daily routine, but differences were visible: even when total acceleration was comparable, little was vertical in horizontal movements, such as ice skating (uniaxial counts 41% of triaxial) compared to complex movements (taekwondo, 55%) or ambulation (soccer, 69%). Triaxial accelerometry captured differences in movement pattern between sports, but so little time was spent in sport that, across the whole day, uni- and triaxial signals correlated closely. This indicates that, with certain limitations, uniaxial accelerometric measures of routine activity from older studies can be feasibly compared to triaxial measures from newer studies. Comparison of new studies based on raw accelerations to older studies based on proprietary devices and measures (epochs, counts) will require additional efforts which are not addressed in this paper

    Collecting health-related research data using consumer-based wireless smart scales

    Get PDF
    Background: Serious public-health concerns such as overweight and obesity are in many cases caused by excess intake of food combined with decreases in physical activity. Smart scales with wireless data transfer can, together with smart watches and trackers, observe changes in the population’s health. They can present us with a picture of our metabolism, body health, and disease risks. Combining body composition data with physical activity measurements from devices such as smart watches could contribute to building a human digital twin. Objective: The objectives of this study were to (1) investigate the evolution of smart scales in the last decade, (2) map status and supported sensors of smart scales, (3) get an overview of how smart scales have been used in research, and (4) identify smart scales for current and future research. Method: We searched for devices through web shops and smart scale tests/reviews, extracting data from the manufacturer’s official website, user manuals when available, and data from web shops. We also searched scientific literature databases for smart scale usage in scientific papers. Result: We identified 165 smart scales with a wireless connection from 72 different manufacturers, released between 2009 and end of 2021. Of these devices, 49 (28%) had been discontinued by end of 2021. We found that the use of major variables such as fat and muscle mass have been as good as constant over the years, and that minor variables such as visceral fat and protein mass have increased since 2015. The main contribution is a representative overview of consumer grade smart scales between 2009 and 2021. Conclusion: The last six years have seen a distinct increase of these devices in the marketplace, measuring body composition with bone mass, muscle mass, fat mass, and water mass, in addition to weight. Still, the number of research projects featuring connected smart scales are few. One reason could be the lack of professionally accurate measurements, though trend analysis might be a more feasible usage scenario

    Mabnet: Master Assistant Buddy Network With Hybrid Learning for Image Retrieval

    Get PDF
    Image retrieval has garnered a growing interest in recent times. The current approaches are either supervised or self-supervised. These methods do not exploit the benefits of hybrid learning using both supervision and self-supervision. We present a novel Master Assistant Buddy Network (MAB-Net) for image retrieval which incorporates both the learning mechanisms. MABNet consists of master and assistant block, both learning independently through supervision and collectively via self-supervision. The master guides the assistant by providing its knowledge base as a reference for self-supervision and the assistant reports its knowledge back to the master by weight transfer. We perform extensive experiments on the public datasets with and without post-processing

    Health research requires efficient platforms for data collection from personal devices

    Get PDF
    Data from consumer-based devices for collecting personal health-related data could be useful in diagnostics and treatment. This requires a flexible and scalable software and system architecture to handle the data. This study examines the existing mSpider platform, addresses shortcomings in security and development, and suggests a full risk analysis, a more loosely coupled component- based system for long term stability, better scalability, and maintainability. The goal is to create a human digital twin platform for an operational production environment
    • …
    corecore