59 research outputs found

    Evolutionary Analyses of Staphylococcus aureus Identify Genetic Relationships between Nasal Carriage and Clinical Isolates

    Get PDF
    Nasal carriage of Staphylococcus aureus has long been hypothesized to be a major vector for the transmission of virulent strains throughout the community. To address this hypothesis, we have analyzed the relatedness between a cohort of nasal carriage strains and clinical isolates to understand better the genetic conformity therein. To assess the relatedness between nasal carriage and clinical isolates of S. aureus, a genetic association study was conducted using multilocus sequence typing (MLST) and typing of the hypervariable regions of clumping factor and fibronectin binding protein genes. At all loci analyzed, genetic associations between both nasal carriage and clinical isolates were observed. Computational analyses of MLST data indicate that nasal carriage and clinical isolates belong to the same genetic clusters (clades), despite differences in sequence type assignments. Genetic analyses of the hypervariable regions from the clumping factor and fibronectin binding protein genes revealed that not only do clinically relevant strains belong to identical genetic lineages as the nasal carriage isolates within our cohort, but they also exhibit 100% sequence similarity within these regions. The findings of this report indicate that strains of S. aureus being carried asymptomatically throughout the community via nasal colonization are genetically related to those responsible for high levels of morbidity and mortality

    Motion sickness: Only one provocative conflict?

    No full text
    In reviewing the various forms of motion sickness, the classic sensory rearrangement theory has been redefined by demonstrating that only one type of conflict is necessary and sufficient to explain all different kinds of motion sickness. A mathematical description is provided from the summarizing statement that 'All situations which provoke motion sickness are characterised by a condition in which the sensed vertical as determined on the basis of integrated information from the eyes, the vestibular system and the nonvestibular proprioceptors is at variance with the subjective vertical as expected from previous experience'

    Search time critically depends on irrelevant subset size in visual search

    Get PDF
    AbstractIn order for our visual system to deal with the massive amount of sensory input, some of this input is discarded, while other parts are processed [Wolfe, J. M. (1994). Guided search 2.0: a revised model of visual search. Psychonomic Bulletin and Review, 1, 202–238]. From the visual search literature it is unclear how well one set of items can be selected that differs in only one feature from target (a 1F set), while another set of items can be ignored that differs in two features from target (a 2F set).We systematically varied the percentage of 2F non-targets to determine the contribution of these non-targets to search behaviour. Increasing the percentage 2F non-targets, that have to be ignored, was expected to result in increasingly faster search, since it decreases the size of 1F set that has to be searched. Observers searched large displays for a target in the 1F set with a variable percentage of 2F non-targets.Interestingly, when the search displays contained 5% 2F non-targets, the search time was longer compared to the search time in other conditions. This effect of 2F non-targets on performance was independent of set size. An inspection of the saccades revealed that saccade target selection did not contribute to the longer search times in displays with 5% 2F non-targets. Occurrence of longer search times in displays containing 5% 2F non-targets might be attributed to covert processes related to visual analysis of the fixated part of the display. Apparently, visual search performance critically depends on the percentage of irrelevant 2F non-targets
    • …
    corecore