14 research outputs found

    Identification of Novel Candidate Markers of Type 2 Diabetes and Obesity in Russia by Exome Sequencing with a Limited Sample Size

    Get PDF
    Type 2 diabetes (T2D) and obesity are common chronic disorders with multifactorial etiology. In our study, we performed an exome sequencing analysis of 110 patients of Russian ethnicity together with a multi-perspective approach based on biologically meaningful filtering criteria to detect novel candidate variants and loci for T2D and obesity. We have identified several known single nucleotide polymorphisms (SNPs) as markers for obesity (rs11960429), T2D (rs9379084, rs1126930), and body mass index (BMI) (rs11553746, rs1956549 and rs7195386) (p < 0.05). We show that a method based on scoring of case-specific variants together with selection of protein-altering variants can allow for the interrogation of novel and known candidate markers of T2D and obesity in small samples. Using this method, we identified rs328 in LPL (p = 0.023), rs11863726 in HBQ1 (p = 8 × 10−5), rs112984085 in VAV3 (p = 4.8 × 10−4) for T2D and obesity, rs6271 in DBH (p = 0.043), rs62618693 in QSER1 (p = 0.021), rs61758785 in RAD51B (p = 1.7 × 10−4), rs34042554 in PCDHA1 (p = 1 × 10−4), and rs144183813 in PLEKHA5 (p = 1.7 × 10−4) for obesity; and rs9379084 in RREB1 (p = 0.042), rs2233984 in C6orf15 (p = 0.030), rs61737764 in ITGB6 (p = 0.035), rs17801742 in COL2A1 (p = 8.5 × 10−5), and rs685523 in ADAMTS13 (p = 1 × 10−6) for T2D as important susceptibility loci in Russian population. Our results demonstrate the effectiveness of whole exome sequencing (WES) technologies for searching for novel markers of multifactorial diseases in cohorts of limited size in poorly studied populations

    Effect of metal additives on the combustion characteristics of high-energy materials

    No full text
    Thermodynamic calculation of combustion parameters and equilibrium composition of HEMs combustion products showed, that at the increase of aluminum powder dispersity the specific impulse and combustion temperature of solid propellants are reduced due to the decrease of the mass fraction of active aluminum in particles. Partial or complete replacement of aluminum by metal powder (B, Mg, AlB2, AlMg alloy, Fe, Ti and Zr) in HEMs composition leads to the reduce of the specific impulse and combustion temperature. Replacement of aluminum powder by boron and magnesium in HEM reduces the mass fraction of condensed products in the combustion chamber of solid rocket motor. So, for compositions HEMs with boron and aluminum boride the mass fraction in chamber is reduced by 24 and 36 %, respectively, with respect to the composition HEMs with Al powder. But the mass fraction of CCPs in the nozzle exit increases by 13 % for HEMs with aluminum boride due to the formation of boron oxide in the condensed combustion products. Partial replacement of 2 wt. % aluminum powder by iron and copper additives in HEM leads to the reduce of CCPs mass fraction in chamber by 4–10 % depending on the aluminum powder dispersity duo to these metals are not formed condensed products at the HEMs combustion in chamber

    Genetic Dissection Reveals the Role of Ash1 Domains in Counteracting Polycomb Repression

    No full text
    Antagonistic functions of Polycomb and Trithorax proteins are essential for proper development of all metazoans. While the Polycomb proteins maintain the repressed state of many key developmental genes, the Trithorax proteins ensure that these genes stay active in cells where they have to be expressed. Ash1 is the Trithorax protein that was proposed to counteract Polycomb repression by methylating lysine 36 of histone H3. However, it was recently shown that genetic replacement of Drosophila histone H3 with the variant that carried Arginine instead of Lysine at position 36 did not impair the ability of Ash1 to counteract Polycomb repression. This argues that Ash1 counteracts Polycomb repression by methylating yet unknown substrate(s) and that it is time to look beyond Ash1 methyltransferase SET domain, at other evolutionary conserved parts of the protein that received little attention. Here we used Drosophila genetics to demonstrate that Ash1 requires each of the BAH, PHD and SET domains to counteract Polycomb repression, while AT hooks are dispensable. Our findings argue that, in vivo, Ash1 acts as a multimer. Thereby it can combine the input of the SET domain and PHD-BAH cassette residing in different peptides. Finally, using new loss of function alleles, we show that zygotic Ash1 is required to prevent erroneous repression of homeotic genes of the bithorax complex in the embryo

    Virulent Properties of Russian Bovine Viral Diarrhea Virus Strains in Experimentally Infected Calves

    No full text
    The results of experimental study of three noncytopathic and two cytopathic bovine viral diarrhea virus (BVDV) strains isolated from cattle in the Siberian region and belonging to the type 1 (subtypes 1a, 1b, and 1d) have been presented. All investigated strains caused the development of infectious process in the seronegative 4–6-month-old calves after aerosol challenge with the dose of 6 log10 TCID50. The greatest virulence had noncytopathic strain and cytopathic strain related to the subtypes 1d and 1b, respectively. All strains in infected calves caused some signs of moderate acute respiratory disease and diarrhea: depression 3–5 days postinfection (p.i.), refusal to food, severe hyperthermia to 41.9°С, serous exudate discharges from the nasal cavity and eyes, transient diarrhea with blood, leukopenia (up to 2700 cells/mm3), and macroscopic changes in the respiratory organs and intestine. The infected animals recovered from 12 to 15 days p.i. and in 90% cases formed humoral immune response 25 days p.i. (antibody titers to BVDV: 1 : 4–1 : 16). Our results confirmed the presence of virulent BVDV1 strains and showed the need for researches on the molecular epidemiology of the disease, development of more effective diagnostic systems, and optimization of control programs with use of vaccines

    RNA Sequencing of Whole Blood Defines the Signature of High Intensity Exercise at Altitude in Elite Speed Skaters

    Get PDF
    Although high altitude training has been increasingly popular among endurance athletes, the molecular and cellular bases of this adaptation remain poorly understood. We aimed to define the underlying physiological changes and screen for potential biomarkers of adaptation using transcriptional profiling of whole blood. Seven elite female speed skaters were profiled on the 18th day of high-altitude adaptation. Whole blood RNA-seq before and after an intense 1 h skating bout was used to measure gene expression changes associated with exercise. In order to identify the genes specifically regulated at high altitudes, we have leveraged the data from eight previously published microarray datasets studying blood expression changes after exercise at sea level. Using cell type-specific signatures, we were able to deconvolute changes of cell type abundance from individual gene expression changes. Among these were PHOSPHO1, with a known role in erythropoiesis, and MARC1 with a role in endogenic NO metabolism. We find that platelet and erythrocyte counts uniquely respond to altitude exercise, while changes in neutrophils represent a more generic marker of intense exercise. Publicly available data from both single cell atlases and exercise-related blood profiling dramatically increases the value of whole blood RNA-seq for the dynamic evaluation of physiological changes in an athlete’s body
    corecore