36 research outputs found

    A periplasmic cinched protein is required for siderophore secretion and virulence of Mycobacterium tuberculosis.

    Get PDF
    Iron is essential for growth of Mycobacterium tuberculosis, the causative agent of tuberculosis. To acquire iron from the host, M. tuberculosis uses the siderophores called mycobactins and carboxymycobactins. Here, we show that the rv0455c gene is essential for M. tuberculosis to grow in low-iron medium and that secretion of both mycobactins and carboxymycobactins is drastically reduced in the rv0455c deletion mutant. Both water-soluble and membrane-anchored Rv0455c are functional in siderophore secretion, supporting an intracellular role. Lack of Rv0455c results in siderophore toxicity, a phenotype observed for other siderophore secretion mutants, and severely impairs replication of M. tuberculosis in mice, demonstrating the importance of Rv0455c and siderophore secretion during disease. The crystal structure of a Rv0455c homolog reveals a novel protein fold consisting of a helical bundle with a \u27cinch\u27 formed by an essential intramolecular disulfide bond. These findings advance our understanding of the distinct M. tuberculosis siderophore secretion system

    Kombinasi Format Factory, U-lead dan Microsoft Office Powerpoint dalam Upaya Meningkatkan Kualitas Media Pembelajaran

    Get PDF
    Peserta didik mempunyai gaya belajar yang berbeda-beda. Gaya belajar tersebut meliputi auditori, visual dan kinestetik (VAK). Seorang guru harus mampu memenuhi kebutuhan masing-masing gaya belajar peserta didik tersebut. Salah satu cara yang dapat dilakukan adalah dengan menggunakan media pembelajaran berbasis VAK. Media pembelajaran berbasis VAK dapat dipenuhi dengan menyisipkan file video di dalamnya. Selain itu, penggunaan file video sebagai media pembelajaran mendukung implementasi pembelajaran saintifik pada kurikulum 2013. Namun, belum semua guru memiliki kemampuan untuk mengemas file video tersebut dalam bentuk media pembelajaran. Tujuan penelitian ini adalah untuk meningkatkan kemampuan guru-guru di SMA Negeri 1 Teras dan SMA Negeri 1 Boyolali dalam membuat media pembelajaran berbasis VAK dengan kombinasi software Format Factory, U-Lead dan PowerPoint. Hasil penelitian menunjukkan bahwa terjadi peningkatan kemampuan para guru di SMA Negeri 1 Teras dan SMA Negeri 1 Boyolali dalam membuat media pembelajaran. Peningkatan kemampuan guru-guru tersebut berada di atas target yang direncanakan. Rerata peningkatan kemampuan guru-guru di SMA Negeri 1 Teras 7,87% di atas target, sedangkan di SMA Negeri 1 Boyolali 9,58% di atas target. Kata kunci: Media Pembelajaran, Format Factory, U-Lead, PowerPoint Students have different learning styles. Learning styles include visual learners, auditory learners, and kinesthetic learners. A teacher must be able to fulfill the needs of individual students\u27 learning styles. One way that can be applied is using Visual, Audio and Kinesthetic (VAK) learning media based. VAK-learning media based can be created by inserting video files on it. In addition, using video file as a learning media can support the implementation of scientific learning on the 2013 curriculum. However, not all teachers have the ability to use video files into a learning media. The purpose of this study is to improve the teachers\u27 ability at SMA Negeri 1 Teras and SMAN 1 Boyolali on making VAK-learning media based with a combination of Format Factory, U-Lead and PowerPoint software. The results showed that the teachers\u27 ability on making VAK-learning media based was increased. Increased the teachers\u27 ability was above planned target score. The mean score of the teachers\u27 ability at SMA Negeri 1 Teras 7.87% above the target, while at SMAN 1 Boyolali 9.58% above the target

    Refined structure for the complex of d-gluco-dihydroacarbose with glucoamylase from Aspergillus awamori var. X100 to 2.2 Ã… resolution: dual conformations for extended inhibitors bound to the active site of glucoamylase

    Get PDF
    AbstractThe crystal structure at pH 4 of the complex of glucoamylase II(471) from Aspergillus awamori var. X100 with the pseudotetrasaccharide d-gluco-dihydroacarbose has been refined to an R-factor of 0.125 against data to 2.2 Ã… resolution. The first two residues of the inhibitor bind at a position nearly identical to those of the closely related inhibitor acarbose in its complex with glucoamylase at pH 6. However, the electron density bifurcates beyond the second residue of the d-gluco-dihydroacarbose molecule, placing the third and fourth residues together at two positions in the active site. The position of relatively low density (estimated occupancy of 35%) corresponds to the location of the third and fourth residues of acarbose in its complex with glucoamylase at pH 6. The position of high density (65% occupancy) corresponds to a new binding mode of an extended inhibitor to the active site of glucoamylase. Presented are possible causes for the binding of d-gluco-dihydroacarbose in two conformations at the active site of glucoamylase at pH 4

    Solid-State Photoinitiated Cycloaddition Reaction of 4,4′-(Ethene-1,2-diyl)bis(pyridinium) Dinitrate: Charge-Density Perspective on Initial Stage of the Reaction

    No full text
    Solid-state photoinitiated [2 + 2] cycloaddition reaction 2(H2bpe)(NO3)2 → (H4tpcb)(NO3)4 (bpe = 1,2-bis(pyrid-4-yl)ethylene; tpcb = 1,2,3,4-tetrakis(pyrid-4-yl)cyclobutane) was carried out in a single-crystal-to-single-crystal manner. The reaction product was characterized by means of X-ray diffraction and 1H NMR spectroscopy. Only the rctt-isomer of tpcb was found as the reaction product. Intermolecular interactions in a single crystal of (H2bpe)(NO3)2 were studied within the QTAIM approach. Although sum energy of strong and weak hydrogen bonds dominates in total packing energy, contribution of π…π stacking interactions to the packing energy is also prominent. At solid (H2bpe)(NO3)2, stacking of photoreactive H2bpe2+ cations is realized via N…C, C…C and C–H…C bonding, although no four-membered cycles formed by these bond paths was found in molecular graph representation. Reduced density gradient (RDG) surfaces and molecular Voronoi surfaces clearly demonstrate accumulation of charge density between olefin groups prone to take part in photoinitiated cycloaddition reactions. Good correlation between description of hydrogen bonding in terms of QTAIM and Voronoi approaches was demonstrated. The Voronoi approach confirmed that during the photoreaction the system of hydrogen bonds remained almost unchanged

    Regulation of hexokinase I: Crystal structure of recombinant human brain hexokinase complexed with glucose and phosphate

    No full text
    Hexokinase I, the pacemaker of glycolysis in brain tissue and red blood cells, is comprised of two similar domains fused into a single polypeptide chain. The C-terminal half of hexokinase I is catalytically active, whereas the N-terminal half is necessary for the relief of product inhibition by phosphate. A crystalline complex of recombinant human hexokinase I with glucose and phosphate (2.8 Ã… resolution) reveals a single binding site for phosphate and glucose at the N-terminal half of the enzyme. Glucose and phosphate stabilize the N-terminal half in a closed conformation. Unexpectedly, glucose binds weakly to the C-terminal half of the enzyme and does not by itself stabilize a closed conformation. Evidently a stable, closed C-terminal half requires either ATP or glucose 6-phosphate along with glucose. The crystal structure here, in conjunction with other studies in crystallography and directed mutation, puts the phosphate regulatory site at the N-terminal half, the site of potent product inhibition at the C-terminal half, and a secondary site for the weak interaction of glucose 6-phosphate at the N-terminal half of the enzyme. The relevance of crystal structures of hexokinase I to the properties of monomeric hexokinase I and oligomers of hexokinase I bound to the surface of mitochondria is discussed

    Matrix metalloproteinase proteolysis of the mycobacterial HSP65 protein as a potential source of immunogenic peptides in human tuberculosis

    No full text
    Mycobacterium tuberculosis is the causative agent of human tuberculosis (TB). Mycobacterial secretory protein ESAT-6 induces matrix metalloproteinase (MMP)-9 in epithelial cells neighboring infected macrophages. MMP-9 then enhances recruitment of uninfected macrophages, which contribute to nascent granuloma maturation and bacterial growth. Disruption of MMP-9 function attenuates granuloma formation and bacterial growth. The abundant mycobacterial 65 kDa heat shock protein (HSP65) chaperone is the major target for the immune response and a critical component in M. tuberculosis adhesion to macrophages. We hypothesized that HSP65 is susceptible to MMP-9 proteolysis and that the resulting HSP65 immunogenic peptides affect host adaptive immunity. To identify MMPs that cleave HSP65, we used MMP-2 and MMP-9 gelatinases, the simple hemopexin domain MMP-8, membrane-associated MMP-14, MMP-15, MMP-16 and MMP-24, and glycosylphosphatidylinositol-linked MMP-17 and MMP-25. We determined both the relative cleavage efficiency of MMPs against the HSP65 substrate and the peptide sequence of the cleavage sites. Cleavage of the unstructured PAGHG474L C-terminal region initiates the degradation of HSP65 by MMPs. This initial cleavage destroys the substrate-binding capacity of the HSP65 chaperone. Multiple additional cleavages of the unfolded HSP65 then follow. MMP-2, MMP-8, MMP-14, MMP-15 and MMP-16, in addition to MMP-9, generate the known highly immunogenic N-terminal peptide of HSP65. Based on our biochemical data, we now suspect that MMP proteolysis of HSP65 in vivo, including MMP-9 proteolysis, also results in the abundant generation of the N-terminal immunogenic peptide and that this peptide, in addition to intact HSP65, contributes to the complex immunomodulatory interplay in the course of TB infection
    corecore