130 research outputs found

    Cyclotron emission, absorption, and the two faces of X-ray pulsar A 0535+262

    Get PDF
    Deep NuSTAR observation of X-ray pulsar A 0535+262, performed at a very low luminosity of ∼7×1034\sim7\times10^{34} erg s−1^{-1}, revealed the presence of two spectral components. We argue that the high-energy component is associated with cyclotron emission from recombination of electrons collisionally excited to the upper Landau levels. The cyclotron line energy of Ecyc=47.7±0.8E_{\rm cyc}=47.7\pm0.8 keV was measured at the luminosity of almost an order of magnitude lower than what was achieved before. The data firmly exclude a positive correlation of the cyclotron energy with the mass accretion rate in this source.Comment: 5 pages, 3 figures, accepted by MNRAS Letter

    Luminosity dependence of the cyclotron line and evidence for the accretion regime transition in V 0332+53

    Get PDF
    We report on the analysis of NuSTAR observations of the Be-transient X-ray pulsar V 0332+53 during the giant outburst in 2015 and another minor outburst in 2016. We confirm the cyclotron-line energy-luminosity correlation previously reported in the source and the line energy decrease during the giant outburst. Based on 2016 observations, we find that a year later the line energy has increased again essentially reaching the pre-outburst values. We discuss this behaviour and conclude that it is likely caused by a change of the emission region geometry rather than previously suggested accretion-induced decay of the neutron stars magnetic field. At lower luminosities, we find for the first time a hint of departure from the anticorrelation of line energy with flux, which we interpret as a transition from super- to sub-critical accretion associated with the disappearance of the accretion column. Finally, we confirm and briefly discuss the orbital modulation observed in the outburst light curve of the source.Comment: added journal reference&doi for proper indexin

    Dramatic spectral transition of X-ray pulsar GX 304-1 in low luminous state

    Full text link
    We report on the discovery of a dramatic change in the energy spectrum of the X-ray pulsar GX 304-1 appearing at low luminosity. Particularly, we found that the cutoff power-law spectrum typical for accreting pulsars, including GX 304-1 at higher luminosities of LX∼1036−1037L_{\rm X}\sim 10^{36} - 10^{37} erg s−1^{-1}, transformed at lower luminosity of LX∼1034L_{\rm X}\sim 10^{34} erg s−1^{-1} to a two-component spectrum peaking around 5 and 40 keV. We suggest that the observed transition corresponds to a change of the dominant mechanism responsible for the deceleration of the accretion flow. We argue that the accretion flow energy at low accretion rates is released in the atmosphere of the neutron star, and the low-energy component in the source spectrum corresponds to the thermal emission of the optically thick, heated atmospheric layers. The most plausible explanations for the high-energy component are either the cyclotron emission reprocessed by the magnetic Compton scattering or the thermal radiation of deep atmospheric layers partly Comptonized in the overheated upper layers. Alternative scenarios are also discussed.Comment: 5 pages, 2 figures, accepted by MNRAS Letter

    Mechanics and Mathematical Modeling of Class III Treatment with Orthodontic Appliances with a Movable Ramp

    Get PDF
    Treatment of class III is a current problem in orthodontics that requires constant improvement of its methods, development of new or modifications of known methods and techniques. We have developed and studied the modification of removable functionally-directing orthodontic appliances for treatment of Class III, which consists of a plastic base, vestibular arc, retaining clasps, ramp, which is connected with the base by means of two torsion springs. Its usage ensures a prolonged contact of ramp with the teeth. We studied two types of club-shaped springs (torsion springs): one spring, which create an amortization effect during the action of the ramp, but do not change its inclination angle and second one – spring that seek to increase the angle of the ramp inclination due to the disclosure of its curl

    MECHANICS AND MATHEMATICAL MODELING OF CLASS III TREATMENT WITH ORTHODONTIC APPLIANCES WITH A MOVABLE RAMP

    Get PDF
    Treatment of class III is a current problem in orthodontics that requires constant improvement of its methods, development of new or modifications of known methods and techniques. We have developed and studied the modification of removable functionally-directing orthodontic appliances for treatment of Class III, which consists of a plastic base, vestibular arc, retaining clasps, ramp, which is connected with the base by means of two torsion springs. Its usage ensures a prolonged contact of ramp with the teeth.We studied two types of club-shaped springs (torsion springs): one spring, which create an amortization effect during the action of the ramp, but do not change its inclination angle and second one – spring that seek to increase the angle of the ramp inclination due to the disclosure of its curl

    RX J0440.9+4431: another supercritical X-ray pulsar

    Full text link
    In the beginning of 2023 the Be transient X-ray pulsar RX J0440.9+4431 underwent a fist-ever giant outburst observed from the source peaking in the beginning of February and reaching peak luminosity of ∼4.3×1037\sim 4.3\times10^{37} erg s−1^{-1}. Here we present the results of a detailed spectral and temporal study of the source based on NuSTAR, INTEGRAL, Swift, and NICER observations performed during this period and covering wide range of energies and luminosities. We find that both the pulse profile shape and spectral hardness change abruptly around ∼2.8×1037\sim2.8\times10^{37} erg s−1^{-1}, which we associate with a transition to super-critical accretion regime and erection of the accretion column. The observed pulsed fraction decreases gradually with energy up to 20 keV (with a local minimum around fluorescence iron line), which is unusual for an X-ray pulsar, and then rises rapidly at higher energies with the pulsations significantly detected up to ∼120\sim120 keV. The broadband energy spectra of RX J0440.9+4431 at different luminosity states can be approximated with a two-hump model with peaks at energies of about 10-20 and 50-70 keV previously suggested for other pulsars without additional features. In particular an absorption feature around 30 keV previously reported and interpreted as a cyclotron line in the literature appears to be absent when using this model, so the question regarding the magnetic field strength of the neutron star remains open. Instead, we attempted to estimate field using several indirect methods and conclude that all of them point to a relatively strong field of around B∼1013B\sim 10^{13} G.Comment: 11 pages, 10 figures, 2 tables. Submitted to MNRA

    Constraints on the magnetic field structure in accreting compact objects from aperiodic variability

    Get PDF
    We investigate the aperiodic variability for a relatively large sample of accreting neutron stars and intermediate polars, focusing on the properties of the characteristic break commonly observed in power spectra of accreting objects. In particular, we investigate the relation of the break frequency and the magnetic field strength, both of which are connected to the size of the magnetosphere. We find that for the majority of objects in our sample the measured break frequency values indeed agree with estimated inner radii of the accretion disc, which allows to use observed break frequencies to independently assess the magnetic field strength and structure in accreting compact objects. As a special case, we focus on Hercules X-1 which is a persistent, medium-luminosity X-ray pulsar accreting from its low-mass companion. In the literature, it has been suggested that the complex pulse profiles, the spin-up behaviour and the luminosity-correlation of the cyclotron energy seen in Her X-1 can be explained with a complex magnetic field structure of the neutron star. Here, we connect the measured break frequency to the magnetospheric radius and show that the magnetic field strength derived assuming a dipole configuration is nearly an order of magnitude smaller than the magnetic field strength corresponding to the cyclotron energy. Accordingly, this discrepancy can be explained with the magnetic field having strong multipole components. The multipolar structure would also increase the accreting area on the neutron star surface, explaining why the critical luminosity for accretion column formation is puzzlingly high in this source.Comment: 10 pages, 3 figure

    Study of the X-ray pulsar IGR J19294+1816 with NuSTAR: Detection of cyclotron line and transition to accretion from the cold disk

    Get PDF
    In the work we present the results of two deep broadband observations of the poorly studied X-ray pulsar IGR J19294+1816 obtained with the NuSTAR observatory. The source was observed during Type I outburst and in the quiescent state. In the bright state a cyclotron absorption line in the energy spectrum was discovered at E-cyc = 42.8 +/- 0.7 keV. Spectral and timing analysis prove the ongoing accretion also during the quiescent state of the source. Based on the long-term flux evolution, particularly on the transition of the source to the bright quiescent state with luminosity around 10(35) erg s(-1), we conclude that IGR J19294+1816 switched to the accretion from the "cold" accretion disk between Type I outbursts. We also report the updated orbital period of the system
    • …
    corecore