77 research outputs found
Active rotational and translational microrheology beyond the linear spring regime
Active particle tracking microrheometers have the potential to perform
accurate broad-band measurements of viscoelasticity within microscopic systems.
Generally, their largest possible precision is limited by Brownian motion and
low frequency changes to the system. The signal to noise ratio is usually
improved by increasing the size of the driven motion compared to the Brownian
as well as averaging over repeated measurements. New theory is presented here
which gives the complex shear modulus when the motion of a spherical particle
is driven by non-linear forces. In some scenarios error can be further reduced
by applying a variable transformation which linearises the equation of motion.
This allows normalisation which eliminates low frequency drift in the
particle's equilibrium position. Using this method will easily increase the
signal strength enough to significantly reduce the measurement time for the
same error. Thus the method is more conducive to measuring viscoelasticity in
slowly changing microscopic systems, such as a living cell.Comment: 9 pages, 2 figure
Energy, momentum and propagation of non-paraxial high-order Gaussian beams in the presence of an aperture
Non-paraxial theories of wave propagation are essential to model the interaction of highly focused light with matter. Here we investigate the energy, momentum and propagation of the Laguerre–, Hermite– and Ince–Gaussian solutions (LG, HG, and IG) of the paraxial wave equation in an apertured non-paraxial regime. We investigate the far-field relationships between the LG, HG, and IG solutions and the vector spherical wave function (VSWF) solutions of the vector Helmholtz wave equation. We investigate the convergence of the VSWF and the various Gaussian solutions in the presence of an aperture. Finally, we investigate the differences in linear and angular momentum evaluated in the paraxial and non-paraxial regimes. The non-paraxial model we develop can be applied to calculations of the focusing of high-order Gaussian modes in high-resolution microscopes. We find that the addition of an aperture in high numerical aperture optical systems does not greatly affect far-field properties except when the beam is significantly clipped by an aperture. Diffraction from apertures causes large distortions in the near-field and will influence light–matter interactions. The method is not limited to a particular solution of the paraxial wave equation. Our model is constructed in a formalism that is commonly used in scattering calculations. It is thus applicable to optical trapping and other optical investigations of matter
Not just energy, but momentum and angular momentum too: Mechanical effects in scattering
We review the transport and transfer of momentum and angular momentum by electromagnetic waves, and applications of the mechanical effects of scattering
Optical tweezers toolbox: better, faster, cheaper; choose all three
Numerical computation of optical tweezers is one path to understanding the subtleties of their underlying mechanism—electromagnetic scattering. Electromagnetic scattering models of optical trapping can be used to find the properties of the optical forces and torques acting on trapped particles. These kinds of calculations can assist in predicting the outcomes of particular trapping configurations. Experimentally, looking at the parameter space is time consuming and in most cases unfruitful. Theoretically, the same limitations exist but are easier to troubleshoot and manage. Towards this end a new more usable optical tweezers toolbox has been written. Understanding of the underlying theory has been improved, as well as the regimes of applicability of the methods available to the toolbox. Here we discus the physical principles and carry out numerical comparisons of performance of the old toolbox with the new one and the reduced (but portable) code
Optical tweezers escape forces
With suitable calibration, optical tweezers can be used to measure forces. If the maximum force that can be exerted is of interest, calibration can be performed using viscous drag to remove a particle from the trap, typically by moving the stage. The stage velocity required to remove the particle then gives the escape force. However, the escape force can vary by up to 30% or more, depending on the particle trajectory. This can have significant quantitative impact on measurements. We describe the variation of escape force and escape trajectory, using both experimental measurements and simulations, and discuss implications for experimental measurement of forces
Computational modelling of optical tweezers with many degrees of freedom using dynamic simulation: cylinders, nanowires, and multiple particles
Computational tasks such as the calculation and characterization of the optical force acting on a sphere are relatively straightforward in a Gaussian beam trap. Resulting properties of the trap such as the trap strength, spring constants, and equilibrium position can be easily determined. More complex systems with non-spherical particles or multiple particles add many more degrees of freedom to the problem. Extension of the simple methods used for single spherical particles could result in required computational time of months or years. Thus, alternative methods must be used. One powerful tool is to use dynamic simulation: model the dynamics and motion of a particle or particles within the trap. We demonstrate the use of dynamic simulation for non-spherical particles and multi-particle systems. Using a hybrid discrete dipole approximation (DDA) and T-matrix method, we find plausible equilibrium positions and orientations of cylinders of varying size and aspect ratio. Orientation landscapes revealing different regimes of behaviour for micro-cylinders and nanowires with different refractive indices trapped with beams of differing polarization are also presented. This investigation provides a solid background in both the function and properties of micro-cylinders and nanowires trapped in optical tweezers. This method can also be applied to particles with other shapes. We also investigate multiple-particle trapping, which is quite different from single particle systems, as they can include effects such as optical binding. We show that equilibrium positions, and the strength of interactions between particles can be found in systems of two and more particles
Roadmap for optical tweezers
Optical tweezers are tools made of light that enable contactless pushing, trapping, and manipulation of objects, ranging from atoms to space light sails. Since the pioneering work by Arthur Ashkin in the 1970s, optical tweezers have evolved into sophisticated instruments and have been employed in a broad range of applications in the life sciences, physics, and engineering. These include accurate force and torque measurement at the femtonewton level, microrheology of complex fluids, single micro- and nano-particle spectroscopy, single-cell analysis, and statistical-physics experiments. This roadmap provides insights into current investigations involving optical forces and optical tweezers from their theoretical foundations to designs and setups. It also offers perspectives for applications to a wide range of research fields, from biophysics to space exploration.journal articl
- …