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ABSRACT 
Computational tasks such as the calculation and characterization of the optical force acting on a sphere are relatively 
straightforward in a Gaussian beam trap. Resulting properties of the trap such as the trap strength, spring constants, and 
equilibrium position can be easily determined. More complex systems with non-spherical particles or multiple particles 
add many more degrees of freedom to the problem. Extension of the simple methods used for single spherical particles 
could result in required computational time of months or years. Thus, alternative methods must be used. One powerful 
tool is to use dynamic simulation: model the dynamics and motion of a particle or particles within the trap. We 
demonstrate the use of dynamic simulation for non-spherical particles and multi-particle systems. Using a hybrid discrete 
dipole approximation (DDA) and T-matrix method, we find plausible equilibrium positions and orientations of cylinders 
of varying size and aspect ratio. Orientation landscapes revealing different regimes of behaviour for micro-cylinders and 
nanowires with different refractive indices trapped with beams of differing polarization are also presented. This 
investigation provides a solid background in both the function and properties of micro-cylinders and nanowires trapped 
in optical tweezers. This method can also be applied to particles with other shapes. We also investigate multiple-particle 
trapping, which is quite different from single particle systems, as they can include effects such as optical binding. We 
show that equilibrium positions, and the strength of interactions between particles can be found in systems of two and 
more particles. 
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1. INTRUDCTION 
Since Ashkin’s work for optical tweezers in the 1970s [1], optical trapping has been widely used in physics, biology and 
chemistry [2-4]. Spherical particles have few degrees of freedom, therefore it’s much easier to understand the trapping 
and the effect of manipulating such particles is easily to inflict. The calculation for optical trapping of spheres, such as 
the axial and radial trap strengths and spring constants, can be easily done by Lorenz-Mie theory [5,6]. The microspheres 
have found widespread in use as handles or probes and continued to be popular objects of optical trapping. However, 
many other non-spherical particles, such as crystals, single cells or some fabricated non-spherical particles, have been 
trapped or manipulated in optical tweezers. Computational modelling for the optical trapping of such particles is 
significantly more difficult than for spherical particles. Compared with the analytical solution for spheres, the analytical 
solution for non-spherical particles cannot be obtained. Numerical methods need to use to solve the scattering problem. 
There are many methods that can be used to model such optical trapping. One of the most efficient methods is T-matrix 
method. There are two degrees of freedom in orientation (for axisymmetric particles) or three degrees of freedom 
otherwise required to describe the orientation of the particle. In addition, the single spheres are always trapped on the 
beam axis in a Gaussian beam. Non-spherical particles will not necessarily be centred on the beam axis.  

One more interesting class of non-spherical particles is elongated nanoparticles, which often have subwavelength cross-
sections. Optical trapping and manipulation of such particles have been observed and exploited in aqueous environments 
[7,8]. It is of great interest to investigate the trapping of nanostructures and to discuss their orientations and rotations. As 
                                                            
        * yongyincao@gmail.com 

Optical Trapping and Optical Micromanipulation IX, edited by Kishan Dholakia, Gabriel C. Spalding, Proc. of SPIE Vol. 8458,
84582V · © 2012 SPIE · CCC code: 0277-786/12/$18 · doi: 10.1117/12.930137

Proc. of SPIE Vol. 8458  84582V-1

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 12/09/2015 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Queensland eSpace

https://core.ac.uk/display/15159732?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

 

it affects interaction with the environment, the optical force and torque, and the translational and rotational viscous 
tensors are required to be calculated for this purpose. However, the methods, such as such as DDA, finite difference 
frequency domain (FDFD) or extended boundary condition method (EBCM), don’t work for single elongated particles 
with a large aspect ratio or will take a significantly long time to simulate the movements. If the nanowire with a large 
aspect ratio is calculated using DDA, for instance, it requires a large number of dipoles and the size of dipoles smaller 
than 1/10 of the radius [9]. In addition, multiple particles can be trapped in holographic tweezers or sometimes in a single 
tightly focused laser beam, where the effects of optical binding should be considered [10]. Some calculations for 
multiple-particle systems exist under the condition that the particles are not extremely close to one another. A new 
method is required to solve this problem when the particles are very close. 

In this paper, we develop a model for single particles to simulate the trapping process and apply it to micro- and nano-
cylinders. The force and torque on dielectric cylinders in a tightly focused Gaussian beam are calculated using T-matrix 
method based on discrete dipole approximation [11-14] for single cylinders. Another interesting goal is to develop a 
model for multiple-particle systems, which is quite different from the model for single particle systems. A two-sphere 
system is dynamically simulated using tangential field point-matching method [15,16]. The axial forces of a multiple-
cylinder system are calculated as well. 

2. THEORY 
2.1 Theory for single particle systems 

Optical fields can be expanded in terms of incident and scattered field potentials, which can be written as the sums of 
wave functions in different modes ( inc

nΨ  and Ψk
scat ). There is a relationship between the incident and scattered fields 

  %P=T %A,  (1) 

where %P  and %A  are vectors of the beam shape coefficients of incident and scattered fields.  T is the transition matrix of 
a particle. We label two components of the beam expansion coefficients of the incident field as a0 and b0, which are the 
TE/TM modes of %A  in the Cartesian coordinate system centred on the beam focus. The coefficients in an arbitrary 
coordinate system centred at any position can be found using a linear transformation [11,17,18],  

 a = R2 R1
−1AR1a0 +R1

−1BR1b0( ),  (2) 

 b = R2 R1
−1BR1a0 +R1

−1AR1b0( ).  (3)  

Where a and b are the coefficients of the incident field in the new orthogonal coordinate system. R1 and R2 are the 
rotation of beam shape coefficients as shown in Fig. 1. A and B are the translations of beam coefficients in the rotated 
coordinate system along O1O2. When the beam shape coefficients in particle-orientated frame are obtained, the 
coefficients of the scattered field, p and q (the TE/TM modes of %P ), can be found by Eq. (1).   

A particle near the focal region will “fall” into the trap at the equilibrium position with a stable orientation as a result of 
optical force and torque. The force and torque acting on the particle, F and Г, are calculated using optical tweezers 
computational toolbox [19]. All the micro- or nano-particles in our calculations are at low Reynolds number [20], 
therefore we consider the viscous drag exerted on the particle as opposing the optical force, and that the viscous torque 
opposes the radiation torque. Given the force, torque, position and orientation at time t, the particle’s next position and 
orientation after a short time interval can be obtained using the following equations 

   (4) 

   (5) 

  r t + dt( ) = r t( ) + v dt,  (6) 

  R2,3,t+dt = ΔRR2,3,t . (7) 
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Where v and ω are velocity and angular velocity of the particle at time t, r is the position of the centre of mass, γt and γr 
are the translational and rotational viscous friction tensors for the particle respectively. dt is generally a time interval 
between 10-4~10-3 s. R2,3,t and R2,3,t+dt are the rotation matrices of the particle at time t and t+dt, which represent the 
orientations of the particle. ΔR is found using the Euler-Rodrigues formula for axis angle rotations [21].  

 
Figure 1. Rotations and translations of beam coefficients from the Cartesian coordinate system x1y1z1 centred on the beam 
focus to an arbitrary coordinate system x3y3z3 in particle frame. R1 and R2 are the rotations of beam coefficients. A and B 
are the translations of beam coefficients along O1O2 direction. 

2.2 Multiple scattering 

For the multiple-particle systems, the effects of multiple scattering should be considered. When the group of particles are 
not close to one another, multiple scattering is weak. The solution of the electromagnetic field is well approximated by 
the sum of the external field and the field scattered by each particle in the absence of other particles. The scattering field 
of each particle can be found by Eq. (1). Therefore, the incident field for each scatterer can be written as [11,22] 

 ak
i = ak 0

i + a js
i

j≠k
∑ ,  (8) 

 bk
i = bk 0

i + b js
i

j≠k
∑ . (9) 

Where i is the time step, j and k represent the jth and kth scatterers.  ak0 and bk0 are the beam coefficients of the incident 
field for the kth scatterer without considering other scatterers. ajs and bjs are the beam coefficients of the scattering field 
for the jth scatterer. The iterative process continues until the scattering field of each scatterer converges. The forces and 
torques can then be obtained. The theory of multiple scattering works well when the particles are not very close to one 
another. However, there are few reports for solving the problem when the particles are extremely close or stuck to one 
another. We combine the theory of multiple scattering and point matching to solve this problem. 

3. RESULTS 
A single tightly focused Gaussian beam was used in our calculations, which was focused by high numerical aperture lens 
(NA = 1.25). The beam propagated along the +z1 direction with its focus located at the origin O1 as shown in Fig. 1. The 
wavelength chosen for the beam was λ = 800 nm in water. The power going through the focal plane was Pinc = 1 mW.  

3.1 Orientation landscapes for single cylinders  

The equilibrium positions and orientations of cylinders of varying size and aspect ratio can be easily obtained using the 
model outlined in section 2. Since the translational and rotational friction tensors for cylinders given by Delatorre and 
Bloomfield [23] only apply to aspect ratio of length to diameter greater than one, we did not perform calculations for 
disks (aspect ratio < 1). We reformed calculations for micro- and nano-cylinders with diameters less than 500 nm and 
lengths less than 3000 nm. Orientation landscapes for micro-cylinders and nanowires with different refractive indices 
trapped in linearly and circularly polarized beams are presented in Fig. 2. The polarizations of the beams in Fig. 2a, 2c 
and 2e are linear polarization. The beams for Fig. 2b, 2d and 2f are circularly polarized. There are four regimes in the 
orientation landscapes for cylinders: a horizontal region, vertical region, an intermediate region between the vertical and 
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horizontal regions, and an untrapped region. In general, particles with large sizes or high-indices possibly can’t be 
trapped. The cylinders in the horizontal and vertical regions are oriented to the horizontal and vertical directions 
respectively. The cylinders in the intermediate region can be trapped with a tilt angle between 0 and 90 degrees from the 
beam axis. There is no untrapped region for the cylinders with refractive index of 1.38 as shown in Fig. 2a and 2b. There 
is a small untrapped region for cylinders in Fig. 2c and 2d, of which the refractive index is 1.57. The untrapped region 
for the silicon cylinders with a very high refractive index (3.5498) is much larger as shown in Fig. 2e and 2f.  

 
Figure 2. Orientation landscapes of micro- and nano-cylinders with different refractive indices in (a, c, e) linearly and (b, d, 
f) polarized beams. The refractive indices are (a, b) 1.38, (c, d) 1.57 and (e, f) 3.5498. “H” represents horizontal orientation. 
The “star” means the longest nanowire or microcylinder trapped horizontally for each diameter. The “circle” represents the 
shortest nanowire or microcylinder trapped vertically for each diameter. The “cross” indicates the shortest nanowire or 
microcylinder for each diameter, which cannot be trapped (vertically). The fitting curves are used to distinguish different 
regions. 

There is a big difference in the orientation landscapes of cylinders with a refractive index of 1.38 or 1.57 between linear 
and circular polarizations. For cylinders with the same refractive index, the horizontal and intermediate regions are 
smaller for circular polarization when compared to corresponding regions for the linear polarization. The vertical 
orientation region becomes larger for circular polarization. This means that the rods trapped with stable horizontal 
orientation or with a tilt angle in a linear polarized beam may be trapped vertically in the beam with circular polarization. 
The linear polarization contributed to the horizontal torque component which would make the rod lie down. However, 
the circular polarization made the time-averaged horizontal torque component so weak that the rod stands up. The 
difference of orientation regions between linear and circular polarizations for silicon cylinders is very small. There is no 
vertical region for these cylinders. The orientations of the cylinders with sizes around the intermediate region are very 
sensitive. Polarizations clearly have a strong effect on the orientation of cylinders. However, polarizations do not dictate 
whether a particle can be trapped or not. 
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3.2 multiple-particle systems 

The model based on the algorithm for multiple scattering (section 2.2) was used to simulate movements of particles. The 
T-matrices for the particles in multiple-particle systems were calculated using point matching. It was found that if the 
precision of T-matrices for multiple-particle system was too low, the calculation would fail after several steps. The 
scattering matrices amplified |2T+I|2 were used to check the precision of the T-matrix, where I is identify matrix of T-
matrix. The sums of each column of |2T+I|2 were between 0.99 and 1.01 in our high precision calculations. This shows 
that our method is numerically stable for non-absorbing particles. 

Two-sphere systems were modelled first. Fig. 3 shows the movements of a two-sphere system which was trapped in 
linear and circularly polarized beams. The spheres were made of glass with a refractive index of 1.57 and with a diameter 
of 0.5λ. The spheres were initially located at (0.5, -0.5, 2)λ and (-0.5, 0.5, 2)λ. The initial system configuration shifted 
when the computation was performed. During the calculation, collision detection routines were used to adjust the 
spheres’ positions so that they didn’t intersect. The spheres located on the side of the beam axis came toward to the beam 
axis, and they were then pulled along the beam axis to their final positions where they stuck together. The equilibrium 
positions in linearly and circularly polarized beams were the same for the two particles, which were (0, 0, -0.06)λ and (0, 
0, -1.06)λ respectively. For some particles, the equilibrium position can be before the focal plane [24]. The centre of the 
particle is before the focal plane, but part of the particle lies after the focal plane as well. 

 
Figure 3. Optical trapping of two spheres in (a) linearly and (b) circularly polarized beams. A and B are the initial positions 
of the spheres. A2 and B2 are the equilibrium positions. Trajectories of the centers of mass of objects are shown by the solid 
curves and arrows. For the clear view, the curves of trajectories were moved apart. 

The algorithm for multiple scattering was also used to calculate the axial forces acting on a single cylinder with a large 
aspect ratio, which couldn’t be calculated using the standard fitting method. We assumed that the cylinder was made up 
of several short cylinders stuck together. In general, point matching method works well for a single cylinder with an 
aspect ratio smaller than 2. Fig. 4 shows the force components along x-axis and z-axis exerted on a cylinder with the 
radius of 0.25 μm and the length of 1.5 μm when the cylinder was along z-axis. The glass cylinder (n = 1.57) was 
chopped into 2~5 pieces of short cylinders with the same lengths. The beam was linearly polarized along x-axis. The 
force efficiencies calculated using multiple scattering were the sum of the force exerted on each short cylinder. The 
differences between the x-component force curves shown in Fig. 4a are extremely small, which can be considered as the 
same results. The z-component forces in Fig. 4b are not the same. However, the differences between these curves are not 
large. The calculations converged and could be considered as a having consistent behaviour. Therefore, this model for 
multiple-particle systems can be considered as a new approximation method. There wasn’t any force curve calculated 
using other methods, because the results obtained using other different methods, such as DDA, FDFD or EBCM were 
not the same and the differences were not small. This remains an open question about where the different methods apply.  
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Figure 4. Force efficiency curves of cylinders along (a) x-axis and (b) z-axis using the model of multiple-particle systems. 
The radius of the cylinder is 0.25 μm, and the length is 1.5 μm. The cylinder was chopped into different pieces (2~5) of 
short cylinders. 

The method can be used for the cylinders with diameters between 100 nm and λ (800 nm). However, when the method is 
used to calculate the force on a cylinder with a diameter larger than λ, the results will start to become inaccurate. For 
instance, Fig. 5 shows the results for the cylinder with a diameter of 1.25 λ and a length of 6.25 λ, which was chopped 
into 5 pieces. The x- and z-component force efficiencies exerted on the cylinder were calculated using this model. The x-
component force curve is not correct. There is a little peak near the focus, which shouldn’t exist. The T-matrix of the 
subcylinder was analysed as shown in Fig. 5b. The sums of each column of |2T+I|2 were between 0.96 and 1.01. In 
general, this level of accuracy is sufficient for single cylinders, but not for multiple-scattering particles. The T-matrix 
under these conditions is not good enough. 

 
Figure 5. (a) Axial force efficiency curves and (b) the sums of each column of |2T+I|2of the cylinder with a diameter of 
1.25 λ and a length of 6.25 λ. The cylinder was chopped into 5 pieces of short cylinders with the same length. 

4. CONCLUSIONS 
The model for single particles has been presented and used to calculate the orientations of cylinders with different 
refractive indices. The orientation landscapes of cylinders with diameters between 0 and 500 nm and lengths between 0 
and 3000 nm have been presented. There are four regimes in the orientation landscapes of cylinders with aspect ratio 
larger than one: a horizontal region, vertical region, an untrapped region, and intermediate region between the vertical 
and horizontal regions. The orientation landscapes of the cylinders with refractive indices of 1.38 and 1.57 demonstrated 
that the stable orientations of cylinders could strongly depend on the trapping beam polarization. Beam polarizations had 
little effect on the orientation of cylinders with very high refractive index (3.5498). Apart from these specific results for 
cylindrical particles, the model is actually a general method for different shaped particles. If the translational and 
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rotational viscous drag tensors of a shaped particle are known, the method can be used to find equilibrium positions and 
orientations for the particle in optical tweezers. There are some limitations, such as the lack of drag tensors for some 
shaped particles. However, it is possible to approximate their drag tensors very simply, such as by using the tensors for a 
sphere, when the particle is being trapped into its equilibrium position and orientation. The trajectories obtained using 
this approximation will not be correct, but the equilibrium should be. Even with these limitations, the method presented 
in this paper provides a useful method for the prediction of equilibriums of many shaped particles.  

The model for multiple-particle systems has been developed. The two-sphere system has been simulated when they were 
trapped into equilibriums. The final stuck configuration has been found in a single tightly focused Gaussian beam. A 
multi-segment cylinder with aspect ratio of 3 has been calculated using multiple scattering. Results for different numbers 
of cuts of the same cylinder were quite similar. The model can be considered as a new approximate method to calculate 
optical trapping of multiple-particle systems. This method works well for multiple-sphere systems. It also has been 
demonstrated that it can be used for the systems of which the particles are stuck together. The interaction or optical 
binding in multiple-sphere systems can be investigated using this model. For some kinds of particles the multiple-
scattering method doesn’t work. The work on multiple scattering is still in the preliminary stages and so not all 
behaviours, nor all situations where the method is inaccurate have been researched.  
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