1,204 research outputs found

    The RNAseIII enzyme Drosha is critical in T cells for preventing lethal inflammatory disease

    Get PDF
    MicroRNAs (miRNAs) are implicated in the differentiation and function of many cell types. We provide genetic and in vivo evidence that the two RNaseIII enzymes, Drosha and Dicer, do indeed function in the same pathway. These have previously been shown to mediate the stepwise maturation of miRNAs (Lee, Y., C. Ahn, J. Han, H. Choi, J. Kim, J. Yim, J. Lee, P. Provost, O. Radmark, S. Kim, and V.N. Kim. 2003. Nature. 425:415–419), and genetic ablation of either within the T cell compartment, or specifically within Foxp3+ regulatory T (T reg) cells, results in identical phenotypes. We found that miRNA biogenesis is indispensable for the function of T reg cells. Specific deletion of either Drosha or Dicer phenocopies mice lacking a functional Foxp3 gene or Foxp3+ cells, whereas deletion throughout the T cell compartment also results in spontaneous inflammatory disease, but later in life. Thus, miRNA-dependent regulation is critical for preventing spontaneous inflammation and autoimmunity

    Ball on a beam: stabilization under saturated input control with large basin of attraction

    Get PDF
    This article is devoted to the stabilization of two underactuated planar systems, the well-known straight beam-and-ball system and an original circular beam-and-ball system. The feedback control for each system is designed, using the Jordan form of its model, linearized near the unstable equilibrium. The limits on the voltage, fed to the motor, are taken into account explicitly. The straight beam-and-ball system has one unstable mode in the motion near the equilibrium point. The proposed control law ensures that the basin of attraction coincides with the controllability domain. The circular beam-and-ball system has two unstable modes near the equilibrium point. Therefore, this device, never considered in the past, is much more difficult to control than the straight beam-and-ball system. The main contribution is to propose a simple new control law, which ensures by adjusting its gain parameters that the basin of attraction arbitrarily can approach the controllability domain for the linear case. For both nonlinear systems, simulation results are presented to illustrate the efficiency of the designed nonlinear control laws and to determine the basin of attraction

    A novel method to perform morphological measurements on three-dimensional (3D) models of the calcaneus based on computed tomography (CT)-imaging

    Get PDF
    Background: While current preoperative and postoperative assessment of the fractured and surgically reconstructed calcaneus relies on computed tomography (CT)-imaging, there are no established methods to quantify calcaneus morphology on CT-images. This study aims to develop a semi-automated method for morphological measurements of the calcaneus on three-dimensional (3D) models derived from CT-imaging. Methods: Using CT data, 3D models were created from healthy, fractured, and surgically reconstructed calcanei. Böhler's angle (BA) and Critical angle of Gissane (CAG) were measured on conventional lateral radiographs and corresponding 3D CT reconstructions using a novel point-based method with semiautomatic landmark placement by three observers. Intraobserver and interobserver reliability scores were calculated using intra-class correlation coefficient (ICC). In addition, consensus among observers was calculated for a maximal allowable discrepancy of 5 and 10 degrees for both methods. Results: Imaging data from 119 feet were obtained (40 healthy, 39 fractured, 40 reconstructed). Semiautomated measurements on 3D models of BA and CAG showed excellent reliability (ICC: 0.87-1.00). The manual measurements on conventional radiographs had a poor-to-excellent reliability (ICC: 0.22-0.96). In addition, the percentage of consensus among observers was much higher for the 3D method when compared to conventional two-dimensional (2D) measurements. Conclusions: The proposed method enables reliable and reproducible quantification of calcaneus morphology in 3D models of healthy, fractured and reconstructed calcanei.</p

    A novel method to perform morphological measurements on three-dimensional (3D) models of the calcaneus based on computed tomography (CT)-imaging

    Get PDF
    Background: While current preoperative and postoperative assessment of the fractured and surgically reconstructed calcaneus relies on computed tomography (CT)-imaging, there are no established methods to quantify calcaneus morphology on CT-images. This study aims to develop a semi-automated method for morphological measurements of the calcaneus on three-dimensional (3D) models derived from CT-imaging. Methods: Using CT data, 3D models were created from healthy, fractured, and surgically reconstructed calcanei. Böhler's angle (BA) and Critical angle of Gissane (CAG) were measured on conventional lateral radiographs and corresponding 3D CT reconstructions using a novel point-based method with semiautomatic landmark placement by three observers. Intraobserver and interobserver reliability scores were calculated using intra-class correlation coefficient (ICC). In addition, consensus among observers was calculated for a maximal allowable discrepancy of 5 and 10 degrees for both methods. Results: Imaging data from 119 feet were obtained (40 healthy, 39 fractured, 40 reconstructed). Semiautomated measurements on 3D models of BA and CAG showed excellent reliability (ICC: 0.87-1.00). The manual measurements on conventional radiographs had a poor-to-excellent reliability (ICC: 0.22-0.96). In addition, the percentage of consensus among observers was much higher for the 3D method when compared to conventional two-dimensional (2D) measurements. Conclusions: The proposed method enables reliable and reproducible quantification of calcaneus morphology in 3D models of healthy, fractured and reconstructed calcanei.</p

    Noise parametric identification and whitening for LIGO 40-meter interferometer data

    Full text link
    We report the analysis we made on data taken by Caltech 40-meter prototype interferometer to identify the noise power spectral density and to whiten the sequence of noise. We concentrate our study on data taken in November 1994, in particular we analyzed two frames of data: the 18nov94.2.frame and the 19nov94.2.frame. We show that it is possible to whiten these data, to a good degree of whiteness, using a high order whitening filter. Moreover we can choose to whiten only restricted band of frequencies around the region we are interested in, obtaining a higher level of whiteness.Comment: 11 pages, 15 figures, accepted for publication by Physical Review

    A glassy contribution to the heat capacity of hcp 4^4He solids

    Full text link
    We model the low-temperature specific heat of solid 4^4He in the hexagonal closed packed structure by invoking two-level tunneling states in addition to the usual phonon contribution of a Debye crystal for temperatures far below the Debye temperature, T<ΘD/50T < \Theta_D/50. By introducing a cutoff energy in the two-level tunneling density of states, we can describe the excess specific heat observed in solid hcp 4^4He, as well as the low-temperature linear term in the specific heat. Agreement is found with recent measurements of the temperature behavior of both specific heat and pressure. These results suggest the presence of a very small fraction, at the parts-per-million (ppm) level, of two-level tunneling systems in solid 4^4He, irrespective of the existence of supersolidity.Comment: 11 pages, 4 figure

    Isolated limb perfusion for local gene delivery: efficient and targeted adenovirus-mediated gene transfer into soft tissue sarcomas

    Get PDF
    OBJECTIVE: To evaluate the potential of isolated limb perfusion (ILP) for efficient and tumor-specific adenovirus-mediated gene transfer in sarcoma-bearing rats. SUMMARY BACKGROUND DATA: A major concern in adenovirus-mediated gene therapy in cancer is the transfer of genes to organs other than the tumor, especially organs with a rapid cell turnover. Adjustment of the vector delivery route might be an option creating tumor specificity in therapeutic gene expression. METHODS: Rat hind limb sarcomas (5-10 mm) were transfected with recombinant adenoviruses. Intratumoral luciferase expression after ILP was compared with systemic administration, regional infusion, or intratumoral injection using a similar dose of adenoviruses carrying the luciferase marker gene. Localization studies using lacZ as a marker gene were performed to evaluate the intratumoral distribution of transfected cells after both ILP and intratumoral injection. RESULTS: Intratumoral luciferase activity after ILP or intratumoral administration was significantly higher compared with regional infusion or systemic administration. After ILP, luciferase gene expression was minimal in extratumoral organs, whether outside or inside the isolated circuit. Localization studies demonstrated that transfection was confined to tumor cells lying along the needle track after intratumoral injection, whereas after ILP, lacZ expression was found in viable tumor cells and in the tumor-associated vasculature. CONCLUSIONS: Using ILP, efficient and tumor-specific gene transfection can be achieved. The ILP technique might be useful for the delivery of recombinant adenoviruses carrying therapeutic gene constructs to enhance tumor control

    Improved neonatal brain MRI segmentation by interpolation of motion corrupted slices

    Get PDF
    BACKGROUND AND PURPOSE: To apply and evaluate an intensity‐based interpolation technique, enabling segmentation of motion‐affected neonatal brain MRI. METHODS: Moderate‐late preterm infants were enrolled in a prospective cohort study (Brain Imaging in Moderate‐late Preterm infants “BIMP‐study”) between August 2017 and November 2019. T2‐weighted MRI was performed around term equivalent age on a 3T MRI. Scans without motion (n = 27 [24%], control group) and with moderate‐severe motion (n = 33 [29%]) were included. Motion‐affected slices were re‐estimated using intensity‐based shape‐preserving cubic spline interpolation, and automatically segmented in eight structures. Quality of interpolation and segmentation was visually assessed for errors after interpolation. Reliability was tested using interpolated control group scans (18/54 axial slices). Structural similarity index (SSIM) was used to compare T2‐weighted scans, and SĂžrensen‐Dice was used to compare segmentation before and after interpolation. Finally, volumes of brain structures of the control group were used assessing sensitivity (absolute mean fraction difference) and bias (confidence interval of mean difference). RESULTS: Visually, segmentation of 25 scans (22%) with motion artifacts improved with interpolation, while segmentation of eight scans (7%) with adjacent motion‐affected slices did not improve. Average SSIM was .895 and SĂžrensen‐Dice coefficients ranged between .87 and .97. Absolute mean fraction difference was ≀0.17 for less than or equal to five interpolated slices. Confidence intervals revealed a small bias for cortical gray matter (0.14‐3.07 cm(3)), cerebrospinal fluid (0.39‐1.65 cm(3)), deep gray matter (0.74‐1.01 cm(3)), and brainstem volumes (0.07‐0.28 cm(3)) and a negative bias in white matter volumes (–4.47 to –1.65 cm(3)). CONCLUSION: According to qualitative and quantitative assessment, intensity‐based interpolation reduced the percentage of discarded scans from 29% to 7%
    • 

    corecore